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ABSTRACT
The significant demand for high-quality video streaming, and the
wide proliferation of this application in entertainment, education
and communication, has created an urgent need for methods that
ensure user Quality of Experience (QoE). Traditional approaches
for predicting video playback quality have focused on fine-grained
network layer features, which can be computationally intensive
and require extensive data collection. To reduce the high computa-
tion demand and data collection requirements, we propose to use
machine learning methods to predict mean video playback bitrate
using coarse-grained features derived from real-time packet sched-
uling priority weights. Although coarse-grained features alone may
not always perform optimally due to data ambiguity, they can still
enable meaningful predictions in specific contexts. In this work, we
investigate the use of coarse-grained features and their ability to
predict video streaming QoE. To do so, we introduce a Gaussian
Mixture Model (GMM)-based filtering technique to identify regions
where the model performs well. Our evaluation shows that while
our model initially achieves a 56% macro-average F1 score for the
entire dataset, it reaches an 81% macro-average F1 score with the
filtered subset of data. This approach highlights the potential of
coarse-grained features for accurate QoE estimation by identifying
the regions of the dataset where these features possess sufficient
discriminative power, thereby enhancing domain knowledge and
the trustworthiness of model outputs.
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1 INTRODUCTION
The rapid, worldwide growth in demand for high-quality video
streaming, due in part to the benefits of video in entertainment,
education and communication, has created an urgent need for meth-
ods that ensure user Quality of Experience (QoE) [4, 7]. Most video
providers utilize DASH [17] for video playback. DASH enables dy-
namic, real-time selection of the video bitrate based on network
and device conditions to increase the likelihood of a satisfactory
viewing experience. While video playback bitrate alone does not
fully capture the user experience and factors like rebuffering also
play a significant role, bitrate nevertheless serves as a useful proxy
for estimating QoE. Adjustment of the video bitrate usually results
in modification of video characteristics, such as resolution and
frame rate, which in turn can impact QoE. However, video service
flows often compete for network resources with other flows, such
as web browsing and file transfer. Internet service providers (ISPs)
can alter the resources allocated to each service class by assigning
different priorities to packets from each class. As a result, ISPs can
benefit from solutions that estimate the video playback bitrate in
real-time, enabling the detection of quality drops as they occur and
allowing for timely countermeasures to maintain high QoE.

Given this need, numerous attempts have been made to esti-
mate video QoE in real-time. Some methods, such as deep packet
inspection, have become obsolete due to the adoption of packet
payload encryption techniques. Machine learning methods [1, 3, 8–
10, 12, 18] have gained popularity in tackling this challenge. In
general, the idea is to collect real-time network data to generate
features that describe the current network state. These features are
then used to train a machine learning model to predict video play-
back quality. However, these methods typically require capturing
additional packet data, which is not part of typical ISP operation.
Moreover, processing the volume of data needed for this task re-
quires significant storage, computational cost, and complexity. Prior
studies [11, 16] have investigated the feasibility of predicting video
QoE usingmore coarse-grained features. However, the use of coarse-
grained features inevitably leads to data ambiguity [13], as these
aggregated features often fail to capture the nuanced distinctions
necessary for accurate classification. For example, samples with
similar features may produce different labels. This lack of distinc-
tiveness can result in a higher rate of misclassification and reduced
performance of the model. Therefore, it is in the ISP’s interest to not
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Figure 1: Framework overview.

only determine when the video service experience is unsatisfactory
using readily available data, but to also identify parts of the dataset
where the coarse-grained model performs well, and understand
why it works well, so that it can be used most efficiently.

Based on this tension between the benefits of using coarse-
grained features and the potential increase in data ambiguity and
misclassifications, we pose the following research questions: Can we
differentiate the regions in which our coarse-grained model does and
does not perform well, and in so doing, understand more broadly when
coarse-grained features can be utilized? And to do so, how can we
discover domain knowledge from the filtering criteria to guide future
feature collection processes? To answer these questions, we start by
developing a machine learning model with our own coarse-grained
features. Thenwe investigate whether themodel has learned seman-
tically meaningful patterns. Lastly, we apply filtering to identify
where our model works well and provide explanations on why such
filters would improve performance.

Our study benefits from our collaboration with the leading
geosynchronous satellite internet provider, Viasat, that provides
internet connectivity to 100s of thousands of residential customers
as well as in-flight Wi-Fi to thousands of aircraft worldwide. Their
wide customer base and extensive production data offer signifi-
cant diversity in data distribution, enabling us to address the QoE
prediction problem with a focus on real-world applicability and de-
ployment. Geosynchronous satellites typically offer a fixed amount
of capacity that is shared among many users utilizing different
service types. The fair share allocated to each service can be ad-
justed by altering the packet scheduling weights assigned to each
service. In the context of video streaming, the ISP aims to maxi-
mize the collective utility of all services while ensuring that video
delivery meets a specific bitrate defined by the service level agree-
ment (SLA). To build our machine learning model for predicting
mean playback bitrate, we generate aggregated statistics, similar
to previous work [3, 8, 10, 18], using video fair-share allocation
derived from the production scheduling weights as features. These
features are then used as input to a machine learning model to pre-
dict whether the video playback experience is satisfactory within a
given time window. We note that the generated features are coarse-
grained, as we only have six features (median, mean, skewness,
variance, standard deviation and kurtosis) for each time window.
Other network layer information, such as TCP flags or bytes re-
ceived at the client, are not available and therefore not included as
part of the machine learning model.

Our analysis finds that coarse-grained features do not work well
across all scenarios due to their lack of discriminative power. To
identify regions of the dataset where the model performs well, we
propose a Gaussian Mixture Model (GMM)-based dataset filtering

method. By generating filters to remove data ambiguity, we can
better understand the limitations of our coarse-grained features and
interpret why such features do not performwell in certain scenarios.
This analysis offers insight into where our current features lack
discriminative power. It also helps us understand when and why we
should trust the model outputs and guides future efforts to collect
features at a finer granularity by identifying regions of the dataset
that require more discriminative power. This analysis forms the
basis of our paper. Our contributions are summarized as follows:

(1) We evaluate the feasibility of predicting video QoE using real-
world production data with coarse-grained features from a
geosynchronous satellite network.

(2) We propose a process to identify the parts of dataset in which
coarse-grained features work well.

(3) Based on the filters, we identify why our coarse-grained
features lack discriminative power, guiding our future data
collection process.

Ethical considerations. All data provided for this research is
anonymized, ensuring that individual customers generating the
video playback sessions cannot be identified.

2 QOE PREDICTION FRAMEWORK
In this section, we describe the modelling portion of our QoE predic-
tion model framework. This is represented in the left side, denoted
"Modelling", of Figure 1, which presents an overview of the full
framework. The playback sessions on which we focus exclusively
belong to users watching the same major streaming provider over
the geosynchronous satellite network link. The content provider
offers only long-form video content.

Network data curation.The satellite ISP assigns a real-time packet
scheduling priority or weight to each service class (e.g., video, web
browsing). This weight governs the distribution of network re-
sources to each service class and enables the calculation of the
maximum speed achievable for that service class. This calculation
is known as Passive Speed Measurement (PSM) in our network
management system; it is performed for each service class every
few milliseconds and aggregated into 5-second averages. A low
PSM for video indicates congestion in the production network, re-
sulting in each user receiving a low fair-share allocation for video
streaming. We collect 642,617 raw PSM measurements for 1,885
unique playback sessions from October 1-12, 2023.

Time series rolling window. The playback sessions durations
vary, with a median of 780 seconds, as shown in Figure 2.We apply a
seven-minute rolling window to each playback session and generate
features and labels for that window. The window rolls forward in
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Figure 2: Duration of each playback ses-
sion; vertical line is 420 seconds.
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Figure 3: Temporal relationship between
features and labels.

Figure 4: Model prediction confidence vs
misclassification.

five second increments, effectively creating many seven minute
windows from one playback session. We experimented with time
windows smaller than seven minutes, similar to previous work such
as [3, 8, 18], and found that the prediction results did not improve.

Our data indicates that 98% of the playback sessions do not over-
lap in time. Consequently, we can safely disregard sessions with
overlapping periods to ensure the model focuses on learning pat-
terns from the non-overlapping playback sessions, which constitute
the overwhelming majority. Additionally, we observed that some
playback sessions last less than seven minutes. These sessions are
excluded from our training and testing datasets, resulting in the
removal of approximately 20% of the total playback sessions.

Labelling. The ISP collaborates with a major long-form video
streaming provider to provide Content Delivery Network (CDN)
service, enabling us to measure the video bitrate of individual play-
back sessions in real-time. We compute the mean of the bitrate over
5-second windows that align with our PSM data. We generate labels
that indicate whether each seven minute time window has a mean
playback bitrate less than 1.8Mbps. We use 1.8Mbps because that
is the target playback bitrate (approximately 720p) that the satel-
lite ISP aims to support. We label the time window “Satisfactory”
if the video bitrate is 1.8Mbps or more; otherwise, we label it as
“Unsatisfactory.” The dataset is described in Table 1.

Feature generation. Each seven minute time window, treated as
a 420-second time series, is used to represent the distribution of
the PSM values. We ignore the most recent 105 seconds of each
time window during our feature generation computation as shown
in Figure 3. Our rationale is that the video content downloaded
most recently is not related to the playback bitrate of the current
time window due to the streaming provider typically having a sub-
stantial playback buffer (in minutes). To determine the number of
seconds to ignore, we conducted a grid search ranging from zero to

Table 1: Distribution of dataset labels.

Average bitrate (label) Number of time windows
1.8 Mbps or more 445,451
Less than 1.8 Mbps 185,190
Total 630,641
Unique playback sessions 1,557

400 seconds, with increments of 5 seconds. We found that ignoring
the first 105 seconds provided the best F1 score for the classifier
model before applying any filters. We then generate statistics for
each time window, including the median, mean, skewness, variance,
standard deviation, and kurtosis of that time window. We experi-
mented with the automatic feature generation package "tsfresh" [5],
which generates hundreds of features, but observed that the pre-
diction results were no better than our simple feature engineering.
Therefore, we opted to stick with our simple feature strategy, in
line with the principle of Occam’s Razor. In summary, we created
630,641 time windows, where each time window has six features.

3 PRELIMINARY EVALUATION
We begin with an assessment of the performance of machine learn-
ing (ML)-based classifiers on our dataset with features generated
by the process described in section 2. To do so, we employ several
machine learning models for our experiments, utilizing the sklearn
library in Python to train Random Forest (RF), XGBOOST and AD-
ABOOST models. To address the class imbalance in our dataset,
we set the class weight parameter in these models to “balanced.”
Additionally, we utilize PyTorch to train Long Short-Term Memory
(LSTM) networks, comprising three hidden layers, each with a size
of 50 units. The LSTM network was trained for 100 epochs to iden-
tify the model that performs best on the test set. We divided all time
windows into training and testing sets, allocating 70% for training
and 30% for testing. Importantly, to prevent data leakage and ensure
a fair evaluation, playback sessions included in the training set were
strictly excluded from the testing set. This precaution is crucial as it
significantly enhances the models’ ability to generalize effectively
to unseen playback sessions. Hyperparameters are tuned using
grid search to identify the model with the highest macro-averaged
F1 score across labels. The results are summarized in Table 2. We
found that all models, except for the LSTM, performed similarly
well, with the Random Forest model marginally outperforming the
other models tested. Consequently, we focus our discussion on the
Random Forest model in the remaining sections of the paper.

At first glance, we notice that the precision is low for the “Sat-
isfactory” label while recall is low for the “Unsatisfactory” label.
Consequently, the macro-average F1 is only 56% across the two
labels. This is not entirely surprising, as there are many factors
our PSM measurements cannot capture. PSM measures the speed
experience by determining the rate at which the fullest queues send
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Table 2: Performance of each ML model.

Model Label Precision Recall F1 score

RF Satisfactory 0.4 0.82 0.54
Unsatisfactory 0.84 0.44 0.58

LSTM Satisfactory 0.3 0.64 0.41
Unsatisfactory 0.66 0.31 0.42

XGBOOST Satisfactory 0.4 0.73 0.52
Unsatisfactory 0.81 0.41 0.54

ADABOOST Satisfactory 0.4 0.81 0.54
Unsatisfactory 0.83 0.4 0.54

Figure 5: Feature importance.

data; however, this does not necessarily correlate with the amount
of resources users actually utilize. For instance, a user could ex-
perience low network resource utilization despite high resource
allocation due to a bad WiFi signal or a misaligned satellite antenna.
Given these limitations, our goal in the next section is to understand
the following:

(1) Does the model capture semantically meaningful patterns
based on the provided features?

(2) Are samples misclassified, and if so, are there misclassifica-
tion trends?

(3) Can we identify the subset of the dataset on which the model
performs well? If so, how can this help us uncover some
domain knowledge?

4 DIGGING DEEPER: MODEL INSIGHTS
In this section, we investigate the situations in which our model
does not perform well, and we propose a method to isolate the parts
of the dataset where our model does perform well by identifying
regions of data ambiguity. The overview is shown as right box,
labelled “Model Insight,” in Figure 1.
4.1 What the Model Has Learned
Given the relatively poor performance of the model, our first step
is to assess whether the model has learned something relevant.
Our hypothesis is that if the model has learned a useful subset
of patterns, it should make fairly accurate predictions when the
classification confidence is high. The probability density function
of classification confidence in Figure 4 shows that this is indeed the
case. This implies that the model has learned some patterns that
can confidently classify a subset of the dataset. We will investigate
these patterns in greater detail later in this section.

One way to improve our model accuracy would be to ignore
samples with relatively low classification confidence. However, this
approach has drawbacks. For instance, determining the appropriate
classification confidence threshold can be a challenging task, as
it is often highly specific to the dataset in question. Furthermore,
this method offers little insight into why certain samples should be
excluded from the inference steps at a logical or conceptual level.

As an alternative approach, we rank the importance of each fea-
ture in Figure 5 to gain insight into the patterns learned by themodel
and understand how the generated features guide the decision-
making process. We observe that the median of PSM measurements
within the time window has the highest feature importance. This
feature indicates the level of congestion during that period, as a low
median PSM value typically indicates that the amount of network
resources allocated to each user for video streaming is relatively
low under the current service class priority. Intuitively, we expect a
“Satisfactory” label when the median value is high. Figure 6 shows
the distribution of the median PSM values within a time window for
the two labels. We can visually confirm that time windows labeled
“Unsatisfactory” usually have lower PSM values. Specifically, the
median and mean PSM values for samples with the “Satisfactory”
label are 51 Mbps and 47 Mbps, respectively. In contrast, for sam-
ples with the “Unsatisfactory” label, the median and mean PSM
values drop to 32 Mbps and 35 Mbps, respectively. However, there
is significant overlap between the two labels, potentially reducing
the model’s ability to distinguish between them. To quantify this
overlap, we group the samples of each label into histograms with
100 bins. We then compute the Hellinger distance, a metric used to
quantify the similarity between two probability distributions. The
computed Hellinger distance is 0.3, where zero indicates perfect
similarity and one indicates maximum dissimilarity. The Hellinger
distance further supports our visual observation, indicating that
the two distributions of our labels have a high degree of overlap.

To confirm that this pattern is indeed captured by the model,
we first examine the value of this feature when the model makes
a correct prediction, as shown in Figure 7. We observe that the
model tends to identify time windows with smaller median PSM
values as “Unsatisfactory.” Furthermore, we examine the median
PSM values when the model makes an incorrect prediction, shown
in Figure 8. We note that misclassified samples are primarily those
with an “Unsatisfactory” label yet high median PSM value, which
contrasts with the correctly predicted samples.

In summary, we argue that the model has learned semantically
meaningful patterns to classify the samples. However, the PSM
measurements sometimes lack sufficient discriminative power to
separate the two classes. There are multiple contributors to this
ambiguity. For example, sometimes the content encoding does not
require a higher bitrate; sometimes the player cannot use the avail-
able bandwidth because the encoding ladder lacks sufficient gran-
ularity; or sometimes there are home Wi-Fi or other networking
issues that are not captured by the PSM. This latter case can lead to
users experiencing low video bitrate even though the ISP observes
a high PSM on their end. Our hypothesis is that the model can
make relatively accurate predictions when the satellite link is the
primary bottleneck. For example, when the median PSM values are
low, users cannot achieve speeds higher than the PSM values, and
confounding factors become less relevant to the average playback
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Figure 6: PSM median of the full dataset. Figure 7: PSM median when model pre-
diction is correct.

Figure 8: PSM median when model pre-
diction is incorrect.

Figure 9: Toy example of how GMMmod-
els the label generating process.

Figure 10: Median PSM vs max of GMM
probabilities.

Figure 11: PSM skewness vs max of GMM
probabilities.

bitrate of the time window. The lack of discriminative power of
features is usually because samples of different labels are close to
each other in the feature space [13], making it difficult for classifiers
to draw meaningful decision boundaries.

As a next step, we propose using a Gaussian Mixture Model
(GMM)-based approach to generate data filters that identify parts
of the dataset where our model performs well. A GMM is a proba-
bilistic model that assumes the data is generated from a mixture
of several Gaussian distributions with unknown parameters. This
allows GMM to model complex distributions of samples correspond-
ing to each label within the dataset. By fitting a GMM to our dataset,
we can generate data filters that exclude regions with high data
ambiguity. Additionally, this filtering mechanism can guide us in
discovering valuable domain knowledge about why the filtered
subset of data achieves higher accuracy.

4.2 Dataset filtering
To verify that there is a subset of data where the model trained
by our coarse-grained features is accurate, we model the generat-
ing process of each label using GMMs of the entire dataset. Each
model consists of multiple Gaussian components with parameters
estimated using the expectation-maximization technique; a toy ex-
ample is shown in Figure 9. We can then assign a probability of a
sample belonging to either label. A probability close to 0.5 indicates
that the sample is likely to be generated from either label generat-
ing process; such a data point is therefore ambiguous and would
be challenging for the model to classify.

To showcase how the level of data ambiguity correlates with
the values of the features, we model each label generating process
with three Gaussian components. We then plot the heatmap of each
feature versus the maximum probability of the sample belonging
to a certain label generating process. Figure 10 shows the corre-
lation between the median of the PSM within the time window
and the level of data ambiguity. We observe that most of the data
ambiguity occurs when the PSM median is more than 20 Mbps.
This suggests that our features are better indicators of the playback
bitrate when the median of PSMmeasurements is less than 20 Mbps.
Therefore, confounding factors may be less significant when the
PSM measurements are below 20 Mbps. Simply removing samples
with PSM measurements greater than 20 Mbps also aligns with the
ISP’s objective, as it is more important to understand and predict
the video playback bitrate during periods of network congestion.

We use the original model trained in Section 3 to make predic-
tions on the subset of the test set where the median PSM measure-
ments are less than 20 Mbps. The prediction accuracy is shown in
the second row in Table 3, labeled “Median,” where we observe that
the macro-average F1 score has increased by roughly 5%.

To refine our filters further, we re-run the GMM model on the
reduced dataset. We observe that we can further eliminate data
ambiguity by removing samples whose skewness is between zero
and two in the reduced dataset, shown in Figure 11. Applying both
filters to the test set results in a further increase in the F1 score,
achieving a macro-average F1 score of 81%, as shown in the last row
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of Table 3 labeled “Median+Skewness.” We also observe that using
any single filter alone fails to achieve the same level of accuracy.

A positive skewness usually indicates the presence of positive
spikes in PSM measurements within the time window. It is, there-
fore, not surprising that this makes estimating the playback bitrate
challenging because the video player has to decide whether to select
a higher resolution or maintain the current playback bitrate. Such
decisions typically rely on factors that cannot be captured by our
PSM measurements, such as the amount of video content buffered
in the playback buffer. In summary, GMM-based filtering helps
uncover domain knowledge that is not immediately obvious. This
method also aids in understanding when we can trust the model
outputs based on the given features.

Table 3: Performance metrics on different data subsets.

Filter Label Precision Recall F1 score

None Satisfactory 0.40 0.82 0.54
Unsatisfactory 0.84 0.44 0.58

Median Satisfactory 0.63 0.53 0.58
Unsatisfactory 0.59 0.69 0.63

Skewness Satisfactory 0.86 0.49 0.63
Unsatisfactory 0.38 0.8 0.52

Median+Skewness Satisfactory 0.95 0.83 0.89
Unsatisfactory 0.62 0.87 0.73

5 RELATEDWORK
Many prior studies have proposed machine learning methods to
map hundreds of fine-grained network layer features to resolu-
tion, video bitrate or other forms of QoE [3, 6, 8–10, 12, 14, 18].
For instance, decision trees have been proposed to estimate video
QoE using features generated from TCP flags, as well as network-
layer information from QUIC connections [12]. Methods to detect
video chunks from an encrypted video playback flow were pro-
posed in [8–10]. These solutions generate features based on the
packets within each chunk and then use these features to perform
QoE prediction. Similarly, [3] used a chunk detection mechanism
to enhance model accuracy, exploring the feasibility of using a sin-
gle composite model across multiple streaming providers such as
YouTube, Twitch, Netflix, and Amazon Videos. The work in [18]
comprehensively evaluated multiple machine learning models for
estimating video QoE with network layer features without use of a
chunk detection algorithm.

Use of the reference signal received power (RSRP) to predict
video QoE in a mobile network context was proposed in [1], while
[15] explored use of LSTM networks to predict video QoE, utilizing
the same feature set as described in [18] on an emulated geosyn-
chronous satellite link. There is less prior work that has focused on
predicting video QoE using more coarse-grained features. [11] eval-
uated the prediction of video QoE using aggregated statistics of TCP
flow-level features. The authors achieved comparable prediction
accuracy to fine-grained approaches with only 38 features and up to
60 times lower computation overhead. However, TCP flow-level and
client side features may not always be readily available. Methods to

estimate QoE of WebRTC videos using coarse-grained features in a
video conferencing context were proposed in [16]. In each of these
prior studies, the authors achieved high accuracy utilizing their
respective datasets. Hence, these prior works did not have a need
to identify which subsets of the data perform well. Finally, [19]
and [2] explore concept drift problems in the context of network
security and propose techniques such as drifting sample detection
to mitigate these challenges. Their approaches are complementary
to our work.

6 LIMITATIONS AND FUTUREWORK
While our proposed approach demonstrates promising results, there
are several limitations and directions for future research.

More comprehensive QoE Metric: We used bitrate as the metric
to estimate video QoE. However, bitrate alone is not a full repre-
sentation of QoE because it omits other crucial metrics such as
rebuffering. Future work should focus on integrating a more com-
prehensive set of QoE metrics to provide a holistic evaluation of
the user experience.

Data ambiguity handling:We address data ambiguity by discard-
ing ambiguous samples, which could result in the loss of poten-
tially valuable information. Future research should explore more
sophisticated techniques for handling data ambiguity to mitigate
information loss.

Network condition variability: The current methods have not
been extensively tested in a variety of network conditions and tech-
nologies. Extending the proposed methods to account for different
network scenarios, such as other types of satellite and non-satellite
networks or non-congested networks, would enhance their gener-
alizability and applicability across diverse real-world contexts.

7 CONCLUSION
In this paper, we presented a method for predicting the mean video
playback bitrate using coarse-grained features and machine learn-
ing techniques. Through our GMM-based filtering technique, we
demonstrated that while such models may not accurately predict
across all scenarios, they can still learn a subset of patterns and per-
form well on regions of the dataset where coarse-grained features
are more indicative of the mean video playback bitrate. Our frame-
work provides insight into the efficacy of coarse-grained features
and enables discovery of valuable domain knowledge about why
such features may fall short. We believe this approach can be uti-
lized with other machine learning models that use coarse-grained
features to guide future data collection processes.
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