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The emergence of MIMO antennas and channel bonding in 802.11n wireless networks has
resulted in a huge leap in capacity compared with legacy 802.11 systems. This leap, how-
ever, adds complexity to optimizing transmission. Not only does the appropriate data rate
need to be selected, but also the MIMO transmission technique (e.g., Spatial Diversity or
Spatial Multiplexing), the number of streams, and the channel width. Incorporating these
features into a rate adaptation (RA) solution requires a new set of rules to accurately evalu-
ate channel conditions and select the appropriate transmission setting with minimal over-
head. To address these challenges, our contributions in this work are two-fold. First, we
propose a practical link metric that accurately captures channel conditions in MIMO
802.11n environments, and we call this metric diffSNR. Using diffSNR captured from real
testbed environments, we build performance models that accuractely predict link quality
in 95.5% of test cases. Practicality and deployability are guaranteed with diffSNR as it can
be measured on all off-the-shelf MIMO WiFi chipsets. Second, we propose ARAMIS (Agile
Rate Adaptation for MIMO Systems), a standard-compliant, closed-loop RA solution that
jointly adapts rate and bandwidth, and we utilize the diffSNR-based 802.11n performance
models within ARAMIS’s framework. ARAMIS adapts transmission rates on a per-packet
basis; we believe it is the first closed-loop, 802.11 RA algorithm that simultaneously adapts
rate and channel width. We have implemented ARAMIS with diffSNR on Atheros-based
devices and deployed it on our 15-node testbed. Our experiments show that ARAMIS accu-
rately adapts to a wide variety of channel conditions with negligible overhead.
Furthermore, ARAMIS outperforms existing RA algorithms in 802.11n environments with
up to a 10-fold increase in throughput.
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1. Introduction have witnessed a significant increase in sophistication

and complexity that require novel approaches to RA. RA

Rate adaptation (RA) selects the best physical bitrate
based on time-varying channel qualities. With the emer-
gence of the IEEE 802.11n standard, WiFi technologies
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in 802.11 networks not only needs to choose the operating
rate, but also the channel width and MIMO mode. Using
MIMO, a solution can send a single stream using spatial
diversity to improve signal strength, or multiple simultane-
ous streams using spatial multiplexing to increase the trans-
mission rate.

Identifying a link metric that accurately characterizes
and exploits 802.11n MIMO link performance is an
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important component of an effective RA solution. Perhaps
the best RA solution for MIMO environments is to use
802.11n’s Channel State Information (CSI) feedback from
the receiver to compute the transmission rate. However,
complete CSI information is costly to obtain and store [1]
and is therefore supported by very few 802.11n devices.
Existing RA solutions adopt a practical approach and use
a credit-based system [2] or rate sampling [3-5]. Instead
of adapting the rate based on understanding the impact
of environment conditions on 802.11n features, these solu-
tions rely on certain heuristics to converge to the best rate,
which can be costly or misdirected. Therefore, there is a
clear need to build RA solutions over a new, practical link
metric that accurately characterizes links in MIMO
environments.

To characterize MIMO link performance and capture
channel conditions, particularly for the majority of systems
where CSI is not available, our previous work developed a
practical link metric called diffSNR, which provides a good
balance between implementability and accuracy [6].
Similar to CSI-based metrics [7], diffSNR also provides the
flexibility to predict performance for a given rate and chan-
nel width combination simultaneously. diffSNR is com-
puted as the difference between the best and the worst
SNR (Signal-to-Noise Ratio) at any of the receiver’s anten-
nas; it reveals insights on the nature of signal reception, i.e.
whether signals combine constructively or destructively at
the receiver’s antennas. Our close analysis revealed the
dependency of performance on diffSNR, and we exploit this
relationship in the design of a measurement-driven link
quality predictor. Through testing in a variety of environ-
ments, we showed that our diffSNR-based link predictor
estimates link quality over all supported rate and band-
width combinations with an accuracy of at least 95.5%.

A natural extension is to evaluate the application and
impact of diffSNR on RA by implementing or incorporating
diffSNR in the context of an effective 802.11n RA frame-
work. There are two main approaches to RA one can adopt:
an open-loop and a closed-loop approach. In open-loop RA,
the transmitter estimates the best rate of the link to the
receiver by building on some set of parameters or metrics
measured at the transmitter [8]. A closed-loop RA is one in
which the receiver’s insight into the channel conditions
contributes to determining the rate.

As networks become more complex, the use of open-
loop RA techniques becomes increasingly inaccurate. An
RA solution now has to account for many variables that a
transmitter alone cannot accurately capture. In legacy cli-
ents, RA mechanisms have to choose among four PHY rates
in 802.11b and eight rates in 802.11a/g, whereas 802.11n
allows at least 64 combinations (32 rates x 2 channel
widths) and 802.11ac multiplies this number by four. By
allowing the receiver to contribute to the RA process, we
gain an accurate understanding of environment conditions,
and the transmitter can more efficiently select the appro-
priate rate for the link [7].

In a closed-loop RA model, the receiver’s insight into
channel conditions is used to compute the transmission
rate. A feedback mechanism should therefore be incorpo-
rated into the design. In fact, the 802.11n standard sup-
ports an explicit feedback system in MCS Request and

MCS Feedback [9]. By exploiting this standard-compliant
feedback mechanism, accurate receiver-based RA solutions
can be designed for 802.11n MIMO environments.

The state of the art for RA in 802.11n calls for a stan-
dard-compliant, closed-loop solution that accurately
exploits the new features in 802.11 MIMO environments.
Therefore, the RA solution must adopt a link metric that
accurately characterizes MIMO link performance. We pro-
pose such an RA solution, which we call ARAMIS (Agile
Rate Adaptation for MIMO Systems) [6].

ARAMIS is a closed-loop, per-packet RA solution that
simultaneously adapts both rate and channel width. In
our previous work on channel bonding, we showed the
importance of adapting bandwidth in 802.11n with RA to
maximize performance [10,11]. ARAMIS incorporates a
measurement-based, 802.11n link predictor in its design.
Given the current channel conditions, the link predictor
estimates Packet Reception Rate (PRR) for the given link
at all supported rate and bandwidth combinations. Using
this information, ARAMIS then selects the best operating
point, and sends the feedback to the transmitter using a
standard-compliant mechanism. We use our proposed
metric diffSNR to characterize MIMO link performance
and capture channel conditions, as well as serve as input
to the link predictor.

We implemented ARAMIS with diffSNR and evaluated it
on a 15-node testbed [6]. We compared ARAMIS to leading
RA solutions for 802.11n, namely Ath9k [5], Minstrel HT
[4], and RAMAS [2]. We evaluated the solutions under vari-
ous scenarios, including interference, mobility, and hidden
nodes. We demonstrated that ARAMIS is robust, consis-
tently performs well and outperforms existing solutions,
with an average of 0.5-fold and up to a 2.87-fold increase
in throughput compared to its best competitor, RAMAS,
and an average of 3.85 and up to a 10-fold increase com-
pared to Ath9k.

We further provide a more detailed evaluation of
ARAMIS in two respects. First, we compare ARAMIS against
an ideal solution. This comparison allows us to gauge how
closely ARAMIS approximates a performance upper bound.
To conduct this evaluation, we use a trace-driven sim-
ulation, where we implement both ARAMIS with diffSNR
and an ideal solution. We find that ARAMIS closely
approximates the ideal by taking advantage of per-packet
processing. Per-packet RA enables quick and fine adjust-
ments to varying channel conditions and allows the
exploitation of narrow windows of higher bandwidth
opportunities. Ideally, we would compare ARAMIS to an
existing solution in literature that uses CSI to perform rate
adaptation [7]. However, we are unable to implement CSI-
based RA solutions, since our chipsets do not support CSI.
We believe, however, that the ideal solution evaluated in
the trace-driven simulations provides a more accurate
upper bound, since it is implementation-independent.

Our second contribution to a detailed evaluation is of
ARAMIS’s link predictor that is built over diffSNR. This
evaluation reveals that the link predictor exhibits rela-
tively consistent behavior for different frame sizes and
rates. Not surprisingly, the performance of aggressive mod-
ulations is more difficult to predict, and this is translated
into higher Packet Reception Rate (PRR) prediction errors.
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Furthermore, PRR prediction errors increase when spatial
multiplexing is used. Notwithstanding, ARAMIS’s link pre-
dictor maintains a reasonable level of accuracy, with an
average absolute error in PRR predictions of 12%, and by
adding a training mechanism, errors fall to 5.8%.

A final contribution of our work is a detailed evaluation
of the performance insights SNR provides in 802.11n
MIMO environments. Though the inaccuracies of SNR have
been identified in prior work [7,12], we show that SNR
measurements are still useful to provide a high-level
assessment of the channel. Through our detailed evalua-
tion of SNR behavior, we come to understand the impact
of different 802.11n features, namely spatial multiplexing,
spatial diversity, and channel bonding, on its performance.

This paper is organized as follows. We first evaluate the
efficacy of SNR and our metric diffSNR in 802.11n MIMO
environments in Section 2, where we also detail the imple-
mentation cost of CSI. We then present the application of
diffSNR in the design of a link predictor in Section 3, and
evaluate its prediction accuracy. Section 4 discusses our
adopted ARAMIS rate selection algorithm and its compo-
nents. We then evaluate ARAMIS with diffSNR and compare
it to existing solutions under both a simulation and testbed
environment in Section 5. Related areas of research are dis-
cussed in Section 6. Finally, we conclude in Section 7.

2. Metrics for MIMO links

We are first motivated by the need for a new metric by
identifying the limitations of a commonly used and acces-
sible link metric, RSSI (Received Signal Strength Indicator
in dBm), and the cost of using full CSI (Channel State
Information), when available. We then present diffSNR
and examine how it can be used together with RSSI to
accurately reflect the performance of an 802.11n MIMO
link. We measure link quality or performance in terms of
Packet Error Rate (PER, where: PER = 1 — PRR). We conduct
all experiments for both 20 MHz and 40 MHz channels, and
we discuss our observations for three MCS indices that
cover robust (MCS 8), intermediate (MCS 12), and aggres-
sive (MCS 15) PHY rates. For each MCS, we send 5,000
1kB UDP datagrams over 50 different links, selected to
cover a wide variety of cases.! For legibility, we present a
subset of our results that best represents the patterns in
the behavior of RSSI and diffSNR.

2.1. The limitation of RSSI

RSSI, used to directly compute the Signal-to-Noise Ratio
(SNR) in dB,? has traditionally been used to represent the
quality of a link [13]. With knowledge of SNR, and assuming
a channel with AWGN noise (additive white Gaussian noise),
empirical curves or known theoretical formulas have been
used to infer the bit error ratio (BER) for any given MCS.

! See Section 5 for testbed details.

2 802.11n Atheros driver assumes a predefined noise floor and thus
computes RSSI = SNR + NoiseFloor, where SNR is measured from the
channel, and NoiseFloor is set to a default, predefined value of —95 dBm.
We therefore use RSSI and SNR interchangeably, as the latter is a scaled
version of the former.

With the BER and the transmitted frame length, an upper
bound for the packet error rate (PER) can then be estimated.
The existing models that map RSSI to performance show that
a link’s PER is 1.0 for sufficiently low RSSI and then steeply
drops to 0.0 as RSSI increases beyond a threshold value [14].

Fig. 1 plots PER vs SNR averaged over the 50 links in our
testbed. Fig. 1(a) plots the values for one transmit stream
and Fig. 1(b) for two streams. As RSSI increases, we expect
PER to drop since the receiver can better decode the
received signal. Fig. 1, however, shows that this is not
necessarily the case. When we compare Figs. 1(a) and (b),
we observe irregular behavior particularly for aggressive
modulation schemes with spatial multiplexing (MCS 12
and 15). PER does not converge to 0 for high SNR and sur-
prisingly in Fig. 1(b), performance degrades for
SNR > 55 dB; that is, contrary to what seems to be an
established dogma among many network administrators,
higher transmitter power does not translate to better
reception.

There are two explanations to this behavior. High SNR
values are achieved when the output power is high
and/or when the propagation losses are low due to the
close proximity of the transmitter/receiver pair in the
absence of obstacles. Therefore, one explanation is that
high output power can be the source of constellation errors
when using OFDM. The combination of OFDM and high
order amplitude modulations (such as 64-QAM used in
MCS 5 to 7 and 13 to 15) is prone to high peak-to-average
ratios: high peaks cause the power amplifiers to move
toward saturation [15], exhibiting non-linear behavior that
produces inter-modulation distortion. However, the anom-
aly is observed for MCS 12 and 15, but not for MCS 7.

Therefore, the answer must be the presence of a
dominant path between a transmitter/receiver pair, such
as when the nodes are close to each other in direct
line-of-sight, which results in a high Rician K-factor and
the channel becomes increasingly correlated in space.
This hampers the utilization of spatial multiplexing [16],
since it requires that simultaneous streams follow
independent paths with sufficiently different spatial
signatures.

Fig. 1 also shows that SNR is a poor indicator of link
quality for different channel widths. For the same SNR, a
40 MHz channel suffers a higher PER. Wider transmissions
are more likely to suffer from frequency selective fading,
which causes SNR variations across the OFDM subcarriers,
and PER is dominated by the lower SNR carriers. A 40 MHz
channel, therefore, not only requires a stronger transmis-
sion power to achieve the same SNR [17] but also a higher
SNR to provide the same PER.

Despite those anomalies, Fig. 1 seems to show clear
transitions between usable and unusable links for low
MCS indices. However, if we observe the raw data used
to obtain the average behavior depicted in Fig. 1, those
transitions are less apparent. Figs. 2 and 3 plot per-link
PER vs SNR for all testbed links and bandwidths. On the
Y-axis, each point represents PER measured over 5,000
frame transmissions in one particular link. On the X-axis,
each point is the average SNR of the received stream of
packets. Fig. 2 shows results for a single stream, while
Fig. 3 for two streams.
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Fig. 1. Average PER and per-packet SNR over testbed links.

Figs. 2 and 3 show that RSSI is a reliable metric when
robust MCS modes are used that exploit spatial diversity.
For example, the transition region for MCS 0 is only
3-4 dB wide; for a given link at MCS 0, if the measured
SNR is below 6 dB, the link is infeasible (PER ~ 1) and, if
the SNR is above 10 dB, it is feasible (PER ~ 0). However,
for SNR values between 5 and 10 dB, the feasibility of a link
is uncertain; some links yield an excellent performance
with an SNR of 6 dB, while others are not feasible with a
higher SNR of 10 dB. This uncertainty is amplified with
spatial multiplexing and more aggressive modulations,
where the transition region between a feasible and an
infeasible link becomes wider. For example, when both
spatial multiplexing and moderate or fast PHY rates are
used (e.g. MCS >12), the transition region could be as wide
as 35 dB! In such cases, RSSI alone does not provide suffi-
cient information to assess the feasibility of a link. This
result is consistent with previous work [12,7].

2.2. Channel State Information (CSI)

CSI describes the current channel conditions with fine
granularity.® It consists of the attenuation and phase shift

3 Here, we refer to the full CSI matrix and not the coarse grained CSI
provided by Intel 802.11n chipsets [7].
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Fig. 2. Per-link PER vs SNR measurements for one stream.

for each spatial stream to every receive antenna, for every
OFDM subcarrier (56 subcarriers for a 20 MHz bandwidth
and 114 for a 40 MHz bandwidth in 802.11n). Measuring a
complete and timely CSI for all possible MIMO channel con-
figurations requires excessive sampling overhead [1].

In some implementations, successful decoding of a data
packet is required to compute CSI [7]. Additionally, for a
T x R MIMO system of bandwidth W, a series of probe
frames must be sent using T transmit antennas over a
bandwidth W, and received over R receive antennas to
obtain the complete T x R x W CSI matrix. For example, a
3 x 3 MIMO system allows transmissions using one, two
or three simultaneous data streams,” and thus the complete
CSI requires probing all combinations of number of streams
and transmit antennas. As a result, current CSI estimation
approaches require seven probes (or samples) to obtain CSI
for all possible configurations of a 3 x3 MIMO system.
Single-stream MCSs require three probes, to collect CSI for
each individual transmit antenna. Similarly, two-stream
MCSs require three probes, to collect CSI for each combina-
tion of two transmit antennas. Finally, three-stream MCSs
require a single probe from a transmission from all three

4 Where the maximum number of supported data streams in a T x R

MIMO system is min(T,R).
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transmit antennas. The number of required probes increases
dramatically with more antennas and wider channel widths.

Communicating the computed CSI matrix in a feedback
packet also consumes significant bandwidth overhead. The
size in bytes of a feedback packet with complete, noncom-
pressed CSI is 1.029 KB for a 20 MHz channel and 2.095 KB
for a 40 MHz channel [9]. Based on channel coherence time
[18], CSI at the transmitter needs to be updated at least
once every 50 ms. CSI feedback, as a result, consumes
160.64 Kb/s to 335.2 Kb/s respectively. In a per-packet RA
implementation, where CSI needs to be updated fre-
quently, the bandwidth consumed by CSI feedback quickly
becomes a significant overhead.

Complete CSI is clearly expensive to obtain and
communicate, and therefore its applicability to a per-
packet RA solution, particularly in dynamic environments
where timely channel information is necessary, is limited.
Our aim is, therefore, to identify an alternative MIMO link
metric in the design of an agile rate adaptation mechanism.

2.3. Differential SNR (diffSNR)

It is clear that RSSI alone does not accurately capture
the factors that cause the variability in 802.11 channels.
Frequency selectivity due to multipath is one major factor

whose effects are only captured using OFDM per-
subcarrier SNR information [7]. Antenna correlation, or
spatial selectivity, is another factor [19]. Both factors,
however, require costly CSI which is supported by only
very few devices [1]. For devices that do not support CSI,
we develop a practical metric, called diffSNR, by using the
channel metrics available to us in all commodity MIMO
devices. We now show how we can use diffSNR to
accurately reflect channel quality in 802.11n networks.

Multipath propagation in wireless environments pro-
duces constructive and destructive interference at the
receiving antennas [20]. The resulting signal combination
varies at different locations, a concept referred to as spatial
selectivity. MIMO systems take advantage of these multi-
path phenomena to improve performance.

When received signals combine destructively in a pro-
cess called selective fading, SNR can degrade and will reli-
ably indicate a lossy link. Since per-packet SNR is the
linear sum of all per-antenna measurements, if only a por-
tion of the antennas experience fading, the reported SNR
may be high even though the link could be lossy.
Reported SNR does not reflect the extent of selective fad-
ing. We therefore argue that knowledge of the SNR com-
bined with the per-antenna SNR provides us with some
added insight, which can be used to predict the link perfor-
mance with greater accuracy. We henceforth define the
difference between the best and the worst SNR at any of
the receiver’s antennas as diffSNR.

After analyzing real-time traces of RSSI and diffSNR in
different scenarios, we observe that diffSNR does not
depend significantly on either (i) the transmitter’s output
power, where diffSNR varies less than 6%, (ii) the MCS used,
where diffSNR varies less than 2% as shown in Fig. 4, or (iii)
the channel width. On the other hand, diffSNR shows a
clear dependency on the environment: factors such as rich
scattering, dynamic/static positioning, line-of-sight, and
obstacles. Fig. 5 provides two paradigmatic examples of
the real-time evolution of SNR and diffSNR. We find that
a static scenario exhibits fewer variations, as shown in
Fig. 5(a), while a more dynamic environment is reflected
in a wider dispersion of the measured diffSNR which exhi-
bits frequent peaks, as depicted in Fig. 5(b). A peak in
diffSNR can occur when RSSI increases and a subset of the
antennas receive constructive interference. However, we
observe that high diffSNR peaks are often (80% of the time)
caused by some of the antennas suffering from fading; that
is, there is a negative correlation between RSSI and diffSNR.
This behavior is also deduced in Fig. 5(b).

Moreover, for links with similar RSSI, we find that
diffSNR can be used to characterize their performance dif-
ferences. We illustrate this behavior in Fig. 6 using three
representative links. We evaluate their PER vs SNR
relationships using spatial multiplexing (MCS 12 and 15)
and a 40 MHz channel. Link 1 successfully transmits pack-
ets (PER < 0.02) using MCS 12; for MCS 15, there is a clear
transition around 34 dB SNR. Although Link 2 has similar
RSSI values to Link 1, it clearly exhibits worse perfor-
mance: for MCS 12, PER increases rapidly when
SNR <30 dB and MCS 15 remains lossy until SNR > 44 dB.
The difference between Link 1 and 2 can be explained with
diffSNR: for Link 1, we measure an average diffSNR of
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Fig. 5. Real-time evolution of per-packet SNR and diffSNR.

1.82 dB, with a standard deviation of 0.30, while for Link 2,
the average diffSNR is 9.46 dB, with a standard deviation of
0.37. Link 3 displays the worst performance, showing an
average diffSNR of 13.41 dB. This link does not exhibit a
clear transition for MCS 12 and never works for MCS 15.
We can explain this behavior with the dispersion of its
measured diffSNR values with a standard deviation of 0.97.

Given the predictable behavior of diffSNR and its
correlation to RSSI, in the next section, we examine the
implications of the (SNR, diffSNR) relationship and how it
can be used to determine link quality or performance in
terms of PER.

3. Link predictions with diffSNR

A link predictor accurately estimates the PRR of a link
for all MCS and bandwidth combinations. We now describe
the methodology we use to build such a predictor, and
demonstrate how it accurately predicts PRR. In case of
errors, we introduce a low-overhead training mechanism
to improve accuracy.

3.1. A measurement-based approach

Our analysis, summarized in Section 2.3, reveals the
dependency of performance on RSSI and diffSNR together.
That is, the PRR(SNR, diffSNR) relationship yields well-be-
haved surfaces that allow us to predict the PRR of a link
for a given MCS and bandwidth; we show two representa-
tive graphs in Figs. 7 and 8. Fig. 7 shows the measured PRR
for MCS 7 (aggressive modulation, one stream) and Fig. 8
for MCS 12 (intermediate modulation, two streams) as a
function of average per-packet SNR and diffSNR. To more
clearly show the transition between the links with
PRR > 0.5 and those with PRR < 0.5, we include representa-
tive 2D cross-cuts of the 3D plots. For example, as shown in
the projected image in Fig. 7(b) with an SNR of 32 dB, a link
with diffSNR below 5 dB performs well. However with a
diffSNR above 10 dB, the PRR falls to almost 0.

Since robust modulations are less affected by fading,
variations in diffSNR will be more clearly reflected on the
performance of aggressive modulations. Similarly, diffSNR
variations will have little impact on links with high SNR,
but this impact will increase as SNR decreases. For aggres-
sive modulations, and particularly when multiple streams
are used, predicting links with even moderate diffSNR val-
ues involves higher uncertainty. This uncertainty explains
the presence of data points with PER > 0.5 inside the “fea-
sible” region (cf. diffSNR > 8 dB in Fig. 8).

From our experiments, we gather sufficient data to plot
the PRR(SNR, diffSNR) surfaces for each allowable MCS. The
combination of these surfaces for all MCS values consti-
tutes our measurement-based link predictor. Our proposed
predictor is thus based on a three dimensional matrix, as
depicted in Fig. 9. SNR and diffSNR measurements, along
with the operating MCS and bandwidth of a link, constitute
the matrix coordinates from which our measurement-
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Fig. 7. PRR as a function of packet-SNR and diffSNR for MCS 7 and 20 MHz
channel.

based link predictor identifies the corresponding expected
PRR for that link. It is important to note that our testbed
provides us with SNR data for the control (i.e. primary)
20 MHz channel and when channel bonding, the extended
40 MHz channel. Predictions for 20 MHz links can be made
from measurements under 40 MHz links, but not vice versa
[10,11]. Therefore, our predictor builds separate PRR sur-
faces for both 40 MHz and 20 MHz channels for each MCS.

To gather sufficient data to pre-compute and build the
PRR(SNR, diffSNR) surfaces for each MCS and bandwidth
combination, we measure PRR(SNR, diffSNR) over all 50
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Fig. 8. PRR as a function of packet-SNR and diffSNR for MCS 12 and
20 MHz channel.

testbed links while varying the transmit power from
0dBm to the maximum allowed power. As for the (SNR,
diffSNR) data points that do not have measured values,
we fill them by interpolation, using the nearest measured
data points.

3.1.1. About frame size

Intuitively, PRR depends on the length of the frame.
Hence, frame length should be accounted for to predict
PRR. The PRR for any given frame size can be roughly
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Fig. 9. The 3D matrix contains measured and interpolated PER values and
is the structure of our proposed link predictor.

estimated from the PRR we measure for frames carrying

1kB payload using the equation: P, = (Lwoe/m)“, where
P, is the PRR for a payload of x bytes, and L, is the total
length (in bits) of a frame carrying an x byte payload
[21]. Our measurements in different scenarios consistently
show that the transition regions for a link from high qual-
ity to lossy do not exhibit a noticeable difference when the
payload size is changed. Fig. 10 plots both the estimated
PER, following the P, equation above, as well as the mea-
sured PER for payloads of 1500B (Big) and 300B (Small)
for a given link using MCS 12. We observe that, as
expected, larger frames show higher PER; however, the
impact of frame size on the feasibility of a link is still
negligible. This result indicates that transition regions do
not depend on frame size, and thus we do not add frame
size as an additional dimension.

3.2. Prediction accuracy

The link predictor is a pre-computed matrix, with
dimensions defined by the number of supported MCS,
bandwidths, and the range of expected SNR and diffSNR
values. To evaluate our predictor, we build two
6 x 70 x 20 matrices for MCS 0, 4, 7, 8, 12 and 15, with
SNR values from 0 to 69 dB and diffSNR values from 0 to
19 dB, with 1 dB precision.” Our complete predictor consists
of two 16 x 70 x 20 matrices, and is used in future sections.
The reduced matrix consists of 40% of measured values (the
remaining 60% are interpolated). We show that interpolation
has no significant impact on the prediction accuracy.

We evaluate the accuracy of our measurement-based,
pre-computed link predictor by comparing the predicted
PRR values against the measured values for two different
groups of transmitter/receiver pairs. The first group con-
sists of nodes located in the same environment where
the data for the predictor was collected. The second group
consists of a set of laptops placed in two different off-cam-
pus small office/home office environments as well as in an
outdoor environment, on a rooftop free of obstacles with
direct LoS between nodes placed 20 m apart. We include
this second group to evaluate the utility and accuracy of
the proposed predictor in unfamiliar and dissimilar
environments.

5 The distribution of diffSNR in all tested environments lie below 19 dB.
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Fig. 10. Measured and estimated PER vs SNR for payload size of 300B
(Small) and 1500B (Big).

For the first group of nodes located in a familiar
environment, the average absolute error in PRR predic-
tions, computed as the difference between the measured
PRR and the predicted PRR, is only 4.8%. This error ratio
increases for high order modulations (up to 11% for MCS
15) since these modulations show a higher degree of
uncertainty. Although the absolute error may be relatively
high for some MCS indices, we reliably predict link feasibil-
ity with a 96.1% accuracy.® As for the second group of nodes
in new environments, the average absolute error in PRR pre-
dictions is 12% and the accuracy in feasibility predictions is
88.1%. These results show the importance of a calibration or
training mechanism. To increase the prediction accuracy, we
include the error of previous measurements in the new PRR
predictions such that:

PRR"® = PRR(m, B, SNRy, diffSNR,) + E;"" 1)

where PRR]® is the predicted PRR for MCS m and band-
width B;SNRy, and diffSNR, are the currently measured
RSSI and diffSNR values; and PRR(w,x,y,z) returns a PRR
value from the predictor using the input parameters.
Finally, E,Tﬁ is the error in previous predictions for the

same MCS and bandwidth, where 0 < E,’Z‘ﬁ < 1. As detailed
in Section 4.2.3, we compute the error by tracking the real
PRR from received data frames (i.e. no extra signaling is
required) and comparing it with the predicted PRR. The
value E;f'B is computed as an exponential moving average
of the measured error samples with a configurable a. A
large o allows the prediction mechanism to adapt faster
to rapidly varying channels (e.g. with user mobility), while
smaller o values improve the accuracy of the error estima-
tion in more stable environments.

We re-evaluate our results in the new environments
using Eq. (1). Fig. 11(a) computes the average absolute
error in PRR predictions, for all tested MCS indices. On
average, the error in our improved PRR predictions lies
below 5.8%. Fig. 11(b) shows that link feasibility predic-
tions improve to a 95.5% hit rate.

6 Given the steep transitions shown in PRR surfaces, PRR values between
0.3 and 0.7 are good indicators of the limits of link feasibility. Henceforth,
for the purpose of these tests, we consider a link feasible for a given MCS if
PRR > 0.5.
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Recall that we interpolate to fill the gaps in a PRR(SNR,
diffSNR) surface. We observe that regardless of whether the
predictions come from interpolated or measured values,
the predictor accuracy remains the same. For the measure-
ments conducted in unfamiliar environments, we predict
71% of the indoor links from measured values while the
remaining 29% come from interpolated values. For outdoor
links, the proportion is 61 measured to 39% interpolated.
For the familiar environment, interpolated values are not
used. It is therefore not surprising that the outdoor
environment has a greater number of predictions from
interpolated values, as it exhibits different multipath char-
acteristics from an indoor environment, where the
PRR(SNR, diffSNR) surfaces were built.

A detailed evaluation of PRR predictions in these two
new environments reveals the same patterns observed in
the lab measurements. First, performance of aggressive
modulations is more difficult to predict, and this is trans-
lated into lower feasibility prediction rates and higher
PRR prediction errors. Second, PRR prediction errors
increase when spatial multiplexing is used (4.6% average
absolute error for one stream vs 6.9% for two). Finally,
the PRR of a 20 MHz channel can be predicted with slightly
greater accuracy than a 40 MHz channel (96.0% feasibility
prediction hits for 20 MHz channels vs 95.1% hits for
40 MHz).

Spatial multiplexing, aggressive modulations, and
wider (i.e. >20 MHz) channels are all features of new
generation IEEE WLANs that achieve higher data rates at
the risk of greater susceptibility to loss and changes in
environment conditions. Accurately reflecting such
detailed environment conditions however, such as the
number of independent paths and frequency selectivity,
is achieved using fine-grained CSI alone. Our link predictor,
based on diffSNR forgoes the high cost of fine-grained CSI
for ease of implementation, by using coarse-grained infor-
mation on channel conditions, while maintaining a reason-
able level of accuracy in predicting environment
conditions. In the remainder of this paper, we prove the
utility of diffSNR by implementing a novel close-loop rate
adaptation mechanism that includes the link predictor
described in this section.

4. ARAMIS
4.1. Overview

ARAMIS is a closed-loop RA solution for 802.11n MIMO
environments. In the design of such a solution, we identify
three important, high-level components. These three com-
ponents form the critical foundation towards the imple-
mentation of ARAMIS. The first component is a link
metric that can be used to accurately characterize MIMO
link performance. We use our proposed, practical, MIMO
link metric, diffSNR, which provides a good balance
between implementability and accuracy, and is deployable
on any and all off-the-shelf WiFi chipsets (cf. Section 2.3).

The second component is a mechanism that can accu-
rately predict the PRR of a link for any MCS and bandwidth
combination, which we refer to as the link predictor (cf.

Section 3). To predict PRR, the link predictor uses PRR per-
formance models from the adopted link metric. The link
predictor and link metric together form the backbone of
the third main and all-inclusive design component, the rate
selector. Based on current channel conditions which are
determined using the link metric, and the corresponding
PRR values computed using the link predictor, the rate selec-
tor finds the best operating rate and bandwidth with high
accuracy. Since ARAMIS is a closed-loop RA solution, the
rate selector also needs to implement a standard-compliant
feedback mechanism.

Building on these three, high-level components, Fig. 12
depicts the specific components in our implementation of
ARAMIS. In other words, Fig. 12 presents the elements of
ARAMIS’s rate selector, and the corresponding communica-
tion flow between an 802.11 transmitter and receiver pair.
Note that the primary functionality of ARAMIS is imple-
mented at the receiver. We now follow with a description
of each component, starting with the first interface into
ARAMIS’s functionality, which is the Frame Monitor, imple-
mented at the receiver.

The Frame Monitor maintains updated information on
channel conditions by measuring the link metric from
existing data trafficc. We use our proposed practical
MIMO link metric, diffSNR. Current channel status
information is used as input to the Link Predictor, which
estimates the PRR of the link for all supported MCS and
bandwidth combinations. As explained in Section 3, our
measurement-based Link Predictor needs access to the set
of pre-computed PRR surfaces. To improve the accuracy
of predictions, the Link Predictor is assisted by a Training
Phase that corrects errors in predicted PRR values in
real-time by comparing recent predictions with current
performance reported by the Frame Monitor. The Decision
Maker then takes the PRR predictions from the Link
Predictor, and based on some performance model, selects
the best operating point. Using a standard-compliant
mechanism, the Feedback Generator encapsulates informa-
tion on the best possible rate in ACK frames to be sent to
the transmitter. Finally, the transmitter’s Feedback
Receiver forwards the selected MCS and bandwidth to a
Rate Management entity, which configures the PHY accord-
ingly. In the absence of feedback, a backup Timer is imple-
mented at the transmitter to reset the operating rate.

Following this outline, we now describe in detail the
design components of our rate selector, which is used as a
framework for the implementation of RA with diffSNR
(including the diffSNR-based link predictor).

4.2. Rate selector

The rate selector is the final main and all-inclusive
design component of ARAMIS. An effective rate selector
in a closed-loop, 802.11 RA model identifies changes in
environment conditions and responds with the appropri-
ate rate using a standard-compliant feedback method. To
achieve these goals, we now describe how we combine
our knowledge of our link metric, in this case (SNR,
diffSNR), and the Link Predictor in the design of an effective
rate selector. We use the terminology illustrated in Fig. 12.
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Algorithm 1. ARAMIS(SNR, diffSNR)

Output: (1) MCS m; (2) Channel width B;

1: if newPacket = true then
2:  (SNRayg, diffSNR,,) — update-moving-

average(SNR, diffSNR)

3: if exception(SNR, diffSNR) = true then
4: (m,B) — decision-maker() < link-
predictor(SNRqyyg, diffSNR,,)

5: end if
6: end if

4.2.1. Frame monitor

The first step of a rate selector is to identify changes in
channel conditions. This step is necessary to determine
when an alternative rate might be appropriate. We have
verified the accuracy of (SNR, diffSNR) in predicting link
quality. We now describe how we monitor the behavior
of per-packet (SNR, diffSNR) in real-time, using existing
active traffic, to identify changes in channel conditions.

Fig. 5 depicts the evolution in per-packet (SNR, diffSNR)
over time for a given link. Over a short period of time, (SNR,
diffSNR) can fluctuate rapidly. To identify when changes in
(SNR, diffSNR) could reflect a change in channel conditions,
we apply an exponentially weighted moving average
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approach. ARAMIS stores (SNR, diffSNR) for every packet
received and computes their moving average (SNRu.g,
diffSNR,,,). We maintain moving averages not only for
the average (SNR, diffSNR) values, but also for their stan-
dard deviation (SNRyy, diffSNR,,;). ARAMIS initiates lookups
to the link predictor if the current (SNR, diffSNR) lies out-
side of the range specified by SNRy,; + SNRy. The same
conditions apply for diffSNR.

4.2.2. Decision maker

Our rate selector uses a link’s current channel condi-
tions, reflected through the link metric, as input arguments
to the Link Predictor, in this case using (SNRqyg, diffSNR,,,).
The Link Predictor determines accurate PRR estimates for
all supported MCS and bandwidths for that link, as
described in Section 3. The role of the Decision Maker is
to use this information to select the MCS and bandwidth
configuration that yields the highest throughput. One
model would be to select the configuration with the high-
est expected throughput. The computation of the expected
throughput, however, requires a foreknowledge of the
packet size implemented at the transmitter [10], which is
not available at the receiver. Furthermore, this approach
adds significant overhead to the computation of the appro-
priate rate.

We adopt a simple yet effective approach. Our model
selects the MCS and bandwidth combination with the
highest PHY bitrate from a reduced set of combinations
whose predicted PRR is above a threshold. By adjusting this
threshold, ARAMIS has the flexibility to adapt to environ-
ments with varying error tolerances (increased to meet
the requirements of reliability demanding applications, or
relaxed to increase raw throughput).

Fig. 13 demonstrates the behavior of ARAMIS in real-
time, as described in Algorithm 1. In Fig. 13(a) and (b),
we plot the instantaneous values, moving averages, and
upper and lower bounds for our link metrics, both SNR
and diffSNR. Fig. 13(c) depicts how ARAMIS changes MCS
on a per-packet basis based on the correlated (SNR,
diffSNR) values, where ARAMIS selects the MCS with the
highest bitrate from those MCS that achieve a PRR above
a given threshold for the current channel conditions. The
corresponding bandwidth graph is not shown as ARAMIS
always opts for a 40 MHz channel for this link. Although
not depicted, ARAMIS opted for a 20 MHz channel, particu-
larly for the weakest links in our evaluation.

4.2.3. Training phase

To improve the accuracy of predicted PRR values for all
MCS and bandwidth combinations, a training mechanism
is performed on-the-fly using the statistics of received
frames, which does not incur any extra overhead.
ARAMIS measures the link’s actual PRR by dividing the
number of received frames with the Retry flag set to 0,
by the total number of frames sent, the latter computed
using frame sequence numbers. If aggregation is enabled,
more precise PRR estimation could be provided by inspect-
ing the bitmap field present in the Block ACK. ARAMIS then

uses this measured PRR to update EL”’B values in Eq. (1). In
our implementation, E,T*B is computed as the moving
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Fig. 13. Depiction of ARAMIS measurements and behavior. We show that
ARAMIS responds to changes in (SNR, diffSNR) conditions by modifying
the MCS and bandwidth when necessary. In this case, the link always
chooses a 40 MHz channel.

average of error samples with o = 0.9. Our « is large to give
more weight to recent error samples, since the long-term
mean error in PRR predictions is close to O.

4.2.4. Feedback generator

We have discussed how ARAMIS identifies an appropri-
ate rate given the current channel conditions. This rate,
however, should be sent as feedback to the transmitter
using a standard-compliant mechanism. To fully exploit
variations in a MIMO channel, the 802.11n standard sup-
ports MCS feedback (MFB) in link adaptation [9]. MFB is
a subfield of the HT Control field (HTC). HTC is a 4B optional
field added to control packets (such as ACKs and Block
ACKs).



L. Deek et al./ Computer Networks 83 (2015) 332-348 343

High Throughput Control Field (HTC)
Link Adaptation Control

L B16 -
\ T
T
MAL | 1 |cBF MFB: | cB "
B2 B3 B4 B6 e h

Fig. 14. 802.11n compliant MCS feedback system.

Table 1

HTC subfields that support receiver-based RA.
MRQ MCS feedback request
MSI MRQ sequence identifier
MFB MCS feedback
CBF* AP Channel bonding friendly
MIR? Client MCS index request
cwe Client channel width request

¢ Bits allocated to support channel width feedback.

Fig. 14 shows the HTC field with its corresponding link
adaptation control field, where the subfields are described
in Table 1. We propose utilizing the unused fields and
creating subfields that control bandwidth feedback. These
added subfields allow ARAMIS to operate in conjunction
with a channel management solution|[11], where the CBF
field set by the AP defines the supported bandwidth in
the given WLAN. This allows ARAMIS to make informed
channel width decisions using the insight from network
layer conditions. For example, if CBF is set to 1 by a channel
management approach, the client can request to operate
on both a 20 MHz and 40 MHz channel, which it specifies
in the CW subfield, and if CBF is set to O, the client only
operates on a 20 MHz channel. It is worth noting that the
emerging 802.11ac standard supports such a client-based
bandwidth adaptation mechanism, given the maximum
supported bandwidth at the AP.

4.2.5. Timer

A transmitter stops receiving feedback when the
ARAMIS receiver does not receive transmitter frames.
This can happen for two reasons. First, channel conditions
at any given time could change drastically such that the
PRR for the PHY configuration in use suddenly drops to 0.
Second, the transmitter may not have traffic to send. In
both cases, the communication could be set at the wrong
configuration with outdated information, since the trans-
mitter is not receiving feedback to identify the appropriate
MCS and bandwidth. This can lead to performance degra-
dation. To mitigate this problem, we use a timer at the
transmitter, whereby if feedback packets are not received
before the timer expires, the MCS is set back to a reliable
rate, MCS 8, then MCS 0 after a consecutive timeout, at
the same bandwidth.” Our results show that ARAMIS’s

7 This timer presents a tradeoff: a small timer may hastily fall back to
low rates in the presence of severe collisions, and a large timer may prevent
ARAMIS from rapidly adapting to degradations in signal quality.

per-packet rate adaptation is able to rapidly recover from
this MCS reset.

5. Performance evaluation

We evaluate ARAMIS, first using simulation based on
packet traces from our experimental platform. We then
implement ARAMIS on a real testbed and compare its per-
formance to that of existing RA solutions under various
network conditions. The goal of the trace-driven sim-
ulation is to evaluate the design choices for ARAMIS, since
it gives us the flexibility to reproduce environment condi-
tions while evaluating the performance of various design
parameters. Furthermore, the post-processing of these
traces allows us to simulate an optimal (and impractical)
algorithm to use as a benchmark for our approach.

In our testbed implementation, we evaluate ARAMIS
under various scenarios, including interference, mobility,
and hidden nodes. Our goal is to demonstrate the efficacy
of ARAMIS in accurately responding to channel conditions
compared to other popular 802.11n RA solutions. We mea-
sure performance in terms of achieved throughput.

Testbed details: Both evaluation environments are
built over our testbed platform that consists of 15 laptops
deployed in both an open office and semi-open office
environment. Each laptop is equipped with an 802.11n
2x3 MIMO PC card with an Atheros AR5416/AR5133 2.4/
5 GHz chipset. The AR5416 baseband and MAC processor
allow MCS indices 0 to 15. Each laptop runs the Atheros
Ath9k device driver that supports 802.11n [5]. We run
our experiments on the 5 GHz range and verify the lack
of background traffic with a spectrum analyzer.

5.1. Trace-driven simulations

5.1.1. Simulation environment

The simulation utilizes packet traces that we collect
over our testbed for various links. For each MCS, we send
5000 1kB UDP datagrams from the AP to its client at a con-
stant inter-packet delay of 2.7 ms. We introduce this delay
to avoid issues related to buffer overflow and conditions
that restrict our ability to reproduce environment condi-
tions. For the same reasons, we disable packet aggregation.
The packet traces are stored at the client and consist of per-
packet (SNR, diffSNR) values and inter-packet delays, as
well as the computed PER, average SNR, and throughput
for the entire transmission. We fix the transmit power to
11 dBm, which is the maximum common power level
among all MCS. We conduct the above for both 20 MHz
and 40 MHz channels.

We collect packet traces in interference-free environ-
ments as well as controlled interference conditions shown
to affect 802.11n performance [10]. For the interference
conditions, we introduce an interfering link that operates
on either the same or an adjacent channel.

We use the above packet traces as input to our sim-
ulator. The simulator is built in custom C and Python.
The simulator works by replaying per-packet transmis-
sions using each packet’s transmission characteristics,
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namely its MCS, channel width, delay to the next consecu-
tive packet, and packet loss.

We implement ARAMIS and other solutions, namely
Best Fixed and Oracle in our simulator. Best Fixed fixes the
MCS that maximizes throughput for the entire simulation
run, and serves as a performance baseline. Best Fixed differs
from ARAMIS in that it does not perform per-packet RA,
but rather per-transmission RA by selecting the best MCS
that maximizes throughput for that transmission. We add
Best Fixed (stable) to the set of alternative solutions, and
it represents the MCS Best Fixed chooses under stable,
interference-free conditions. Finally, Oracle pre-processes
the entire dataset of traces for every MCS and bandwidth
combination and is thus able to select, for each packet,
the fastest MCS that guarantees successful reception.
Oracle makes optimal per-packet RA decisions, and there-
fore it serves as an upper bound for performance. Each
simulation is run for 200 s of simulation time.

5.1.2. Simulation results

Fig. 15 presents the simulation results. Fig. 15(a) depicts
the UDP throughput under interference-free channel con-
ditions for two types of links, where a weak link is unlikely
to support high MCS due to weak SNR/diffSNR. Fig. 15(b)
shows the result with channel interference. We include
Best Fixed (stable) to Fig. 15(b) to show how the best MCS
that is selected in interference-free conditions would per-
form in interference environments. The insight from these
results is the importance of per-packet rate adaptation in
the presence of interference as well as in stable
environments, where changes in the channel occur on
narrow timescales. Best Fixed (stable) performs poorly
when interference is introduced. ARAMIS takes advantage
of per-packet processing, thus allowing quick and fine
adjustments to varying channel conditions. In the presence
of interference, however, there are fewer opportunities to
take advantage of per-packet RA. As a result, ARAMIS is
shown to provide near-optimal performance, similar to
that obtained by the best fixed MCS, which is another ideal
solution that requires foreknowledge of interference con-
ditions to select the appropriate MCS. With aggregation
disabled, all three solutions show little performance differ-
ences since they are close to the maximum theoretical
throughput. In the next section we show how this PHY
adaptation is combined with aggregation, a link layer fea-
ture, to leverage the potential of IEEE 802.11n.
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5.2. Testbed implementation

5.2.1. Testbed environment

We compare the performance of ARAMIS to that of two
widely used open source 802.11n RA solutions, Ath9k [5]
and Minstrel HT [4], and RAMAS [2], which was recently
shown to be one of the best performing 802.11n RA
solutions.

We run RAMAS using the implementation made avail-
able by its authors. RAMAS is a credit-based system that
divides the features of 802.11n RA into two groups: a mod-
ulation group, which consists of the 802.11n-supported
modulation types, and an enhancement group that includes
the number of independent spatial streams and band-
width. RAMAS implements two independent credit-based
systems for upgrading and downgrading the features of
each group, where each group has a different set of rules
for accumulating credits. For example, if the flow between
a transmitter/receiver pair accumulates a number of cred-
its within a given time window that exceeds a set thresh-
old (where the credit counter is incremented by one each
time packet errors fall below a given threshold), RAMAS
switches to a more aggressive modulation (and vice versa).

Minstrel HT and Ath9k both use random sampling to
find the best MCS. Minstrel HT, however, includes MCS
with different bandwidths in its sampling group. Ath9k
does not have a mechanism for enabling channel bonding,
and to ensure a fair comparison, we set Ath9k’s bandwidth
to 40 MHz to allow it to exploit higher data rates. Ath9k
switches to a 20 MHz channel when the PER is high.
Other schemes select channel width based on their algo-
rithm, and independently of the rate.

We evaluate the RA algorithms in a wide variety of sce-
narios, including interference and mobility. We fix trans-
mit power to 11 dBm and enable packet aggregation. We
measure UDP throughput and PER, and average the results
over 5 runs. The floorplan of our semi-open office, experi-
mental environment is shown in Fig. 16, where the letters
represent node locations. We note that this evaluation is
based on a reduced set of 11 nodes. This reduced set is
carefully chosen to include links with different characteris-
tics (LoS, non-LoS, and a wide range of received signal
strengths).

In our implementation of ARAMIS, we faced restrictions
where the available chipset code does not support enabling
an HTC field for 802.11n feedback. We mitigate this issue

80
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60 Best Fixed mwom—m
Best Fixed (stable) mwmwmm
50

40
30
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Fig. 15. Comparison of ARAMIS against other representative solutions.
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Fig. 16. Floorplan of our testbed environment.

by implementing netlink sockets and transmitting packets
with the HTC field over the wire from the receiver to the
transmitter driver code. As a result, we believe the perfor-
mance in our evaluation is a lower bound. Although trans-
mitting feedback over the wired ensures no delivery loss,
note that if a packet is not successfully received (e.g. there
is a collision or loss), feedback will not be generated over
the wire, as no ACK will be sent over the air. If the packet
is successfully received, the loss of an ACK is unlikely as
shorter ACK frames are sent at low, reliable rates, while
the feedback over the wire is always received with a larger
delay. The overhead of user-space-kernel communications,
though minimal, often lead to delayed rate feedback recep-
tions that trigger timeouts that mimic ACK packet losses.

Moreover, the devices do not provide open access to the
hardware generated Block-ACK at the receiver. This leads
to inaccurate PER measurements, which reduces the preci-
sion of the ARAMIS training mechanism, explained in

Section 4.2.3, and the accuracy of measured E,T*B samples.

5.2.2. Testbed results

Figs. 17 and 18 show that ARAMIS consistently outper-
forms other algorithms in all test cases, with an average of
0.62-fold and up to a 2-fold throughput increase in inter-
ference-free environments, an average of 2-fold and up to
a 10-fold increase in interference conditions, and a 25%
increase in mobile environments.

Interference-free: To assess how well each algorithm
handles random channel loss, for example due to shadow-
ing or multipath, Fig. 17 shows the performance in an
interference-free environment at seven different locations.
Even without the training mechanism, ARAMIS outper-
forms other algorithms with throughput gains of up to
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Fig. 17. Algorithm performance in an interference-free environment.
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Fig. 18. Algorithm performance under interference conditions.

26% and an average of 16% over Minstrel HT, up to 124%
and an average of 90% over Ath9k, and up to 287% and
an average of 79% over RAMAS. Note that our results for
RAMAS are somewhat different from those reported [2],
since they were obtained in different scenarios. RAMAS
was previously evaluated only on the 2.4 GHz range, which
significantly limits the performance benefits of 802.11n
features [22,3].

RAMAS leads to an average PER of 11% and a maximum
of 20%. The credit scheme it uses to adapt the number of
streams is conservative, while the scheme to adapt the
modulation and coding is aggressive. This mismatch causes
RAMAS to often operate at sub-optimal rates with high
modulations and single stream (e.g. MCS 7), which leads
to high PER and reduced performance. Ath9k and
Minstrel HT’s random sampling incurs high overhead that
results in poor performance. Ath9k also assumes PER
monotonically increases with rate, which causes it to seek
a very low PER region (between 2 and 5%) at the cost of
often ignoring suitable high rates.
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ARAMIS relies on our link predictor for rate selection
and hence does not require random sampling. Its link pre-
diction accuracy and ability to adapt MCS and bandwidth
on a per-packet basis maximize opportunities to exploit
more aggressive rates without sacrificing PER. We observe
an average PER between 4 and 6%. ARAMIS is therefore
suitable for low error tolerance applications, such as online
gaming and bulk file transfers.

Interference: We now assess how the algorithms per-
form under interference from signal leakage, hidden nodes,
and channel sharing.

Signal leakage is produced by transmissions on adjacent
channels and can result in collisions similar to the hidden
node problem. We evaluate how the algorithms react to
interference due to leakage with varying interferer band-
width, as we discovered that the impact of leakage varies
according to channel width [10]. Fig. 18(a) presents results
with an interfering link that operates on an adjacent
40 MHz channel, while Fig. 18(b) for an adjacent 20 MHz
interferer.

Ath9k and Minstrel HT respond frequently and rapidly
to interference by reducing the rate. Reducing the rate
exacerbates the impact of leakage; frame transmission
time increases and so do the opportunities for collisions.
Similarly, RAMAS responds to channel disturbances by first
reducing the number of streams, thus reducing the trans-
mission rate.

With signal leakage, the reported SNR may be low and
collisions could be interpreted as wireless losses.
ARAMIS’s PRR predictions hence may not match the mea-
sured values from the training mechanism. When the pre-
diction error E;T‘B exceeds a given threshold, which we set
to 0.2 based on our experiments, ARAMIS interprets that
there is a collision problem and limits the influence of
the training mechanism; it sets Ej*® to the maximum
allowed value, thus maintains transmissions at suitable
high rates. For an adjacent 40 MHz interferer shown in
Fig. 18(a), we improve the throughput by an average of
10% and up to 60% over RAMAS, an average of 25% and
up to 85% over Minstrel HT, and an average of 192% and
up to 782% over Ath9k. For an adjacent 20 MHz interferer
shown in Fig. 18(b), the improvement is an average of
88% and up to 220% over RAMAS, an average of 400% and
up to 412% over Minstrel HT, and an average of 1900%
and up to 1908% over Ath9k. We observe greater perfor-
mance improvements with an adjacent 20 MHz interferer,
since it is the more harmful configuration [10], and
ARAMIS mitigates this interference.

Although the cap on the error threshold mitigates the
effect of interference on RA, it can also degrade perfor-
mance, as seen from location A in Fig. 18(b): ARAMIS first
selects a rate which it identifies is best under interference-
free conditions, and then reacts to high losses by capping
the error threshold to 0.2. We find that, in cases such as
location A when a strong link suddenly becomes extremely
lossy due to strong interference from channel leakage (or
other non-802.11 interference), the error threshold forces
ARAMIS to stay at higher rates than best, leading to perfor-
mance losses.

We also investigate the channel sharing scenario with
an interferer on a 20 MHz channel. This scenario has been
shown to create worse fairness issues than a 40 MHz co-
channel interferer whereby the slower 20 MHz channel
occupies the medium for longer periods of time [10]. In
Fig. 18(c), we evaluate how well the algorithms perform
under such conditions.

The presence of co-channel interference slightly
increases collision probability, and thus Ej*® increases,
but remains under its maximum allowed value. As a result,
the probability of using high rates is slightly reduced and
Minstrel HT matches ARAMIS’s performance in some loca-
tions since those collisions seldom affect Minstrel’s ran-
dom probing mechanism. At locations H and [ in
Fig. 18(c), we notice that channel sharing coupled with
poor channel conditions can hamper the performance of
ARAMIS. Channel sharing limits the number of opportuni-
ties to transmit, and if channel conditions are already poor
and most transmissions are lost, this phenomenon can
trigger ARAMIS’s expiration timer, leading to frequent
fall-backs to slow MCS. This phenomenon motivates the
need for a dynamic expiration timer based on channel
conditions.

The timely detection and adaptation to the channel con-
ditions give ARAMIS an advantage over other algorithms,
and this advantage is also evident in channel sharing con-
ditions. At all locations, ARAMIS maintains the high order
rates, thus exploiting its available channel time. ARAMIS
improves the throughput by up to 76% over RAMAS,
251% over Minstrel HT, and 366% over Ath9k.

Mobility: We create a mobility scenario to evaluate the
responsiveness of ARAMIS to rapidly changing channel
conditions. With a static AP placed at Location I, we move
the client on a trolley through the adjacent corridor from
the indicated P, to P, at an approximate speed of 5 km/h.
ARAMIS achieves throughput of 80.27 Mb/s and improves
the throughput by 25% over RAMAS, 7% over Minstrel HT,
and 15% over Ath9k. The small differences in throughput
in this case may be due to the fact that ARAMIS is close
to the capacity of this channel, which is low.

Note that our ARAMIS implementation had to overcome
significant limitations due to hardware restrictions. These
limitations reduce the potential performance benefits of
ARAMIS. Hence, we believe that the ARAMIS performance
we observe from our experiment is a lower bound.

6. Related work

Wireless link metrics: A significant body of work has
proposed methods to characterize link performance. RSSI,
which is the most accessible link metric, has traditionally
been used to identify a link’s maximum expected through-
put. Recent studies [14,7,12] have shown that RSSI is an
unreliable metric to accurately predict performance. The
utilization of effective SNR [7] is proposed, where the met-
ric is generated using CSI feedback to accurately reflect link
conditions in OFDM environments. However, complete CSI
information could be costly to obtain and store [1] and is
therefore not supported by all 802.11n devices.
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Rate adaptation: Rate adaptation has been one of the
most popular research topics in WLANs [13,8,23] and
new algorithms for 802.11n networks have been proposed
[7,3,24-26]. Although solutions for legacy clients have
been effective, they fall short when applied in 802.11n
OFDM-MIMO settings [3]. Existing 802.11n solutions
require either costly CSI [27,7] or some form of a guided
search (e.g., by probing candidate rates) to determine the
best operating rate [3], which is inefficient when the
search space is large. Other algorithms for MIMO environ-
ments do not consider other 802.11n features, such as
channel bonding [28,26], or consider alternative energy
efficiency goals [25].

7. Conclusion and future work

The 802.11n standard has been touted as a new rev-
olution in Wi-Fi technology, in part because of the number
of new mechanisms that enable a multifold increase in
transmission speeds relative to 802.11a/b/g. What is clear,
however, is that while 802.11n has the theoretical ability
to attain wireless data rates as high as a few hundred
Mbps, it is only through intelligent and adaptive transmis-
sion strategies that such throughputs have a hope of being
achieved. Among the most crucial questions for accessing
the medium is the mechanism to select an appropriate
data rate and bandwidth combination for transmission
that is correctly responsive to changes in signal quality.

Given the high costs of adopting CSI in 802.11n environ-
ments, we have introduced diffSNR as a practical and
deployable link metric that can be used as a framework
for effective RA on any off-the-shelf WiFi chipsets. We
apply diffSNR within the framework of ARAMIS, our pro-
posed closed-loop RA solution that jointly adapts rate
and bandwidth. ARAMIS identifies and adopts a new
method to quantify performance in 802.11n MIMO
environments, and through trace-driven simulations, we
have shown that ARAMIS with diffSNR achieves good accu-
racy and closely approximates an optimal solution.

Through further implementation of our solution, we
have demonstrated that ARAMIS with diffSNR obtains
impressive performance gains over leading 802.11n RA
contenders, including up to a 10-fold increase in through-
put. We believe that ARAMIS is a critical component of a
fully adaptive, intelligent 802.11n management system
that dynamically optimizes 802.11n performance in
response to changing channel conditions commonly pre-
sent in operational wireless networks. Our solution design
can also be applied in the context of the emerging 802.11ac
standard, where MCS and channel width selection are
faced with further challenges.
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