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Abstract
Modeling and estimation for spatial data are ubiq-
uitous in real life, frequently appearing in weather
forecasting, pollution detection, and agriculture.
Spatial data analysis often involves processing
datasets of enormous scale. In this work, we fo-
cus on large-scale internet-quality open datasets
from Ookla. We look into estimating mobile (cel-
lular) internet quality at the scale of a state in the
United States. In particular, we aim to conduct es-
timation based on highly imbalanced data: Most
of the samples are concentrated in limited areas,
while very few are available in the rest, posing
significant challenges to modeling efforts. We pro-
pose a new adaptive kernel regression approach
that employs self-tuning kernels to alleviate the
adverse effects of data imbalance in this problem.
Through comparative experimentation on two dis-
tinct mobile network measurement datasets, we
demonstrate that the proposed self-tuning kernel
regression method produces more accurate pre-
dictions, with the potential to be applied in other
applications.

1. Introduction
Since the invention of cellular-network-based wireless inter-
net access more than two decades ago, the mobile internet
has become an integral component of daily life, enabling
a myriad of activities across diverse spheres, including
communication, entertainment, commerce, and education.
While urban areas generally boast robust mobile internet
connectivity due to extensive infrastructure, rural areas of-
ten experience compromised connectivity (Vogels, 2021).
This disparity is largely due to the lack of sufficient cell tow-
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ers and infrastructural limitations, driven by geographical
dispersion, lower population density, and reduced economic
incentives for investment in these regions. Precisely finding
these areas can lead to better planning of networks (Niu
et al., 2021).

Identifying these underserved or unserved areas with poor
connectivity is vital for telecommunication companies and
policymakers (Mangla et al., 2021). By targeting these
regions, service providers can strategically enhance infras-
tructure, improving coverage and service quality. On a
broader scale, comprehensive connectivity mapping can
inform policy-making, ensuring digital inclusivity and nar-
rowing the digital divide between urban and rural areas.
Improving mobile internet connectivity in rural areas also
holds the potential for significant socio-economic develop-
ment, contributing to regional growth and inclusivity. Thus,
recognizing and addressing regions with poor mobile inter-
net connectivity is a crucial step toward promoting digital
equity and advancing societal progress. In the United States,
the Broadband Equity, Access, and Deployment (BEAD)
program will allocate substantial resources for expansion
in the next few years, guided in part by available data re-
garding spatial quality (National Telecommunications and
Information Administration, 2022).

In this work, we examine the question of predicting mo-
bile internet quality based on an in-depth analysis using
one of the largest open datasets, namely the Ookla dataset
(Ookla, 2022), which captures mobile internet connectiv-
ity measurements worldwide. Users conduct speed tests
on their internet connections using Ookla’s tools. When
a user initiates a speed test, data such as the user’s IP ad-
dress, the Internet Service Provider’s (ISP) identity, and
the connection’s speed (both download and upload mea-
sured connection bandwidth) are logged. However, like
many real-world datasets, it presents certain challenges. It
is characterized by a relatively high variation of data and a
conspicuous absence of measurements in specific areas.

To approach these issues, we develop a novel self-tuning
bandwidth kernel regression method. The hallmark of our
method is its flexibility in the spatial imbalance of data. In
contrast to conventional models, our approach is designed
to adaptively determine the kernel regression bandwidth for
a location. More specifically, we use larger kernel regres-
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sion bandwidth where the data gets sparser. This adaptive
capability enables our model to more effectively handle the
varying data density and spatial distribution inherent in our
dataset.

In addition, we are cognizant of the computational resources
required to process large quantities of data. To mitigate
this issue, we incorporate techniques specifically designed
to reduce the computational cost of our model, making it
more efficient for real-world deployment. The robustness
and effectiveness of our proposed method are substantiated
by a comprehensive comparison with two baseline models:
Gaussian Process regression (Rasmussen et al., 2006) and
the basic kernel regression (Parzen, 1962). This comparative
analysis is carried out across two distinct datasets, offering
further insight into the performance and adaptability of our
method.

In the domain of data-driven mobile internet quality predic-
tion, there are two principal approaches currently: geospa-
tial interpolation (Molinari et al., 2015; Riihijarvi & Ma-
honen, 2018; Tripkovic et al., 2021; Eller et al., 2021;
Chakraborty et al., 2017) and supervised machine learn-
ing (Alimpertis et al., 2019; Rozenblit et al., 2018; Eller
et al., 2022). Geospatial interpolation employs sparse mea-
surements, treated as anchoring points, to generate dense
signal-strength maps in their immediate vicinity. Kriging
is used in these works (Molinari et al., 2015; Riihijarvi &
Mahonen, 2018; Eller et al., 2021). (Molinari et al., 2015)
compares the performances of Kriging and points out that
regular Kriging is fairly robust. (Eller et al., 2021) develops
a propagation-aware Gaussian process regression consider-
ing factors like the block of buildings. While these tech-
niques are conducive to estimating performance in existing
networks, they offer limited applicability in network plan-
ning as adjustments can only be studied post-deployment.
Furthermore, barring a few exceptions, these methodologies
do not inherently account for the effect of the propagation
environment.

On the other hand, supervised machine learning methods
have also been explored (Enami et al., 2018; Wu et al., 2020;
Rozenblit et al., 2018; Alimpertis et al., 2019). Some tech-
niques (Alimpertis et al., 2019) primarily focus on creating
local performance maps, utilizing absolute coordinates or
cell identifiers. However, these approaches lack cross-area
generalization capabilities. There exist alternative super-
vised strategies (Shoewu et al., 2018; Jo et al., 2020) that
restrict themselves to area-independent features, like the
distance between the user equipment and base stations. Nev-
ertheless, in numerous cases, any observed error reductions
predominantly arise from fitting the distribution of a specific
measurement campaign rather than enhancing the efficacy
of traditional methods at a macroscopic level.

In this study, we aim to create an estimation of mobile

internet quality that covers an entire state, not just urban
areas as many previous studies have done. Some works
including (Adarsh et al., 2021) realize the importance of
this field, but they focus more on the data collection and
analysis part instead of developing methods. The lack of
data from rural areas makes this a tough challenge, setting
our work apart from existing approaches. We also show
that our method performs much better than Kriging which
is commonly used in geospatial interpolation work. The
results of our work can guide active sampling in underserved
areas, helping to improve our study further.

The rest of the paper is organized as follows. We first discuss
the literature relevant to cellular network connectivity pre-
diction. Then we give a detailed description of the datasets
used in the paper. After that, we introduce the methods used
in this paper. Finally, we show the numerical experiments
on the two different datasets.

2. Data Description
The dataset utilized in our study is sourced from the open
datasets provided by Ookla. The data gathered by Ookla
from 2019 to 2022 encapsulates the performance metrics of
mobile internet connections for a multitude of users world-
wide. Key variables in this dataset include geographical
coordinates (longitude and latitude), mean download speed
(MB/s), mean upload speed (MB/s), count of tests conducted
in each area (aggregated for user privacy into 600m2 grid
blocks), the number of distinct devices utilized for testing,
and a comprehensive score assessing the connection speed,
among other variables.

The following provides a brief description of some of these
variables:

• Location: Denotes the location of the center of a
600m2 grid block where the users measure the con-
nection speed.

• Download speed: Represents the measured rate of data
transfer from the server to the user’s device. This is
a critical metric as it affects the speed of web page
loading and file downloading, and hence is quite no-
ticeable to the user. Download speeds are reported as
an average in the grid location.

• Upload speed: Corresponds to the measured data trans-
fer rate from the user’s device to the server. This metric
is crucial for tasks like video calls, cloud file uploads,
and user-generated live streaming. Upload speeds are
reported as an average in the grid location.

• Number of tests at each location: This refers to the
number of times tests were conducted in a given grid
block. More tests tend to indicate a more reliable
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Figure 1. Mobile connection score of Georgia and New Mexico,
where the data in Georgia is very dense, and in New Mexico is
sparse.

Figure 2. Kernel density estimation of Georgia and New Mexico
dataset.

measurement score. However, in many locations, only
a single test is conducted.

• Number of devices used for testing: This refers to the
variety of devices used for testing in a certain grid
block, as the performance can vary across different
mobile phones and mobile providers.

• Score: This variable combines both the download and
upload speeds to provide a holistic view of the connec-
tion bandwidth performance.

We have mobile connection data from the states of Geor-
gia in the United States Southeast and New Mexico in the
United States Southwest. The geographic scatter plot of
the connection scores for each dataset is shown in Figure 1.
There are 28,587 data points in the Georgia dataset. The
mean score across grid blocks is 460.067, the min score is
0.056, and the max score is 12421.537. The standard devia-
tion of the score is 616.3. The frequency of scores is shown
in Figure 3. There are 7,579 data points in the New Mexico
dataset. The mean score across grid blocks is 388.128, the
min score is 0.174, and the max score is 13202.754. The
standard deviation of the score is 504.5. The frequency of
scores is shown in Figure 4.

Figure 3. The frequency of scores in Georgia dataset.

Figure 4. The frequency of scores in New Mexico dataset.

3. Methodology
We first employ standard kernel density estimation (Rosen-
blatt, 1956) to generate a heatmap depicting the mobile
connection quality across two distinct geographical areas,
namely Georgia and New Mexico. These heatmaps, as dis-
played in Figure 2, offer an illustrative representation of
connection quality, enabling us to visually assess the spatial
distribution of mobile connectivity in these regions.

However, upon inspection of the resulting heatmaps, it be-
comes evident that the standard kernel density estimation
approach does not provide satisfactory coverage in certain
rural areas. There are locations where the recorded mea-
surements are notably sparse, resulting in large regions with
no substantial estimations. Given that our study has a par-
ticular interest in understanding and improving the mobile
connection quality in these rural and underserved areas,
this observation underscores a significant limitation of the
simple kernel density estimation method.

The apparent lack of estimations in the rural regions does
not necessarily indicate an absence of mobile connectivity;
rather, it highlights the deficiency of data in these areas,
potentially due to their sparse population or challenging
geographical conditions. It is precisely these areas where
there is a need for robust and accurate analytical methods.
Given that conventional kernel density estimation falls short
in this regard, our observations demonstrate the necessity
for adopting more sophisticated, data-driven techniques.

The more advanced methodologies should ideally be able

3



Mobile Internet Quality Estimation using Self-Tuning Kernel Regression

to compensate for the sparse data in rural areas and provide
reliable estimations, thereby offering a more comprehensive
view of the mobile connectivity landscape. Moreover, this
situation also points towards the need for further data col-
lection efforts in such under-represented regions, which can
help in refining our analysis and augmenting the efficacy of
our predictive models.

3.1. Gaussian Process Regression (Kriging)

A Gaussian process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion. This powerful Bayesian methodology can be used for
various tasks such as regression, classification, and optimiza-
tion. Gaussian processes are completely determined by their
mean and covariance functions, and they provide a proba-
bilistic, non-parametric approach to modeling data, meaning
they can flexibly model complex relationships without rely-
ing on a fixed functional form.

Denote the output of the Gaussian process by f(x), where
x is the input. We can then express a Gaussian process as:

f(x) ∼ GP(m(x), k(x,x′)), (1)

where m(x) is the mean function, and k(x,x′) is the co-
variance function. They determine the properties of the
functions drawn from the GP.

Given a set of n observations y = [y1, . . . , yn]
T at locations

X = [x1, . . . ,xn]
T , we can express the joint distribution of

these observations as follows:

y | X ∼ N (m(X),K(X,X)). (2)

Here, m(X) is a vector where the i-th entry is m(xi), and
K(X,X) is a covariance matrix where the entry at the i-th
row and j-th column is k(xi,xj).

Given the observed data, we can make predictions for new
inputs x∗ using the posterior predictive distribution:

f (x∗ | y,X,x∗) ∼ N
(
f̄∗, cov (f∗)

)
, (3)

where f̄∗ is the predictive mean and cov(f∗) is the predictive
covariance.

The Gaussian process offers several advantages, such as
providing a measure of uncertainty (via the predictive vari-
ance) in addition to point estimates and the flexibility of
specifying different covariance functions. However, they
also have some drawbacks. Its computational complexity
scales cubically with the number of observations, which
makes it difficult to tackle large datasets.

In our problem, we denote the inputs and response by x ∈
R2 and y ∈ R, respectively. we utilize the kernel

k(x,x′) = σ2 exp(−(x− x′)T diag(θ1, θ2)(x− x′)),
(4)

where θ1, θ2 and σ are parameters to be trained through max-
imum likelihood. Once the model parameters are trained,
we can use them for prediction.

3.2. Kernel Regression

Kernel regression is a non-parametric technique to estimate
the conditional expectation of a random variable. The ob-
jective is to find a non-linear relationship between the input
variable and the corresponding output. Kernel regression
employs kernel functions, which allow it to capture more
complex patterns than linear regression.

For a given dataset with inputs x and corresponding outputs
y, the kernel regression estimate ŷ at a new input point x is
given by:

ŷ(x) =

∑n
i=1 Kh(∥x− xi∥)yi∑n
i=1 Kh(∥x− xi∥)

. (5)

Here, Kh(u) = 1
hK(uh ) is a kernel function, and h is a

bandwidth parameter. The kernel function K(·) is often
chosen to be a Gaussian kernel, though other choices are
also possible. The bandwidth parameter h controls the width
of the kernel, and hence the smoothness of the estimated
function.

In the Gaussian case, the kernel function K(·) is defined as:

K(u) =
1√
2π

exp

(
−1

2
u2

)
. (6)

Kernel regression estimates the conditional mean function
without imposing a parametric form for the functional re-
lationship between predictors and the outcome variable. It
allows for flexible, data-driven model specification.

The bandwidth h is a crucial parameter in kernel regression.
If h is too small, the estimate will be very rough, capturing
too much noise in the data (overfitting). If h is too large,
the estimate will be too smooth, not capturing important
patterns in the data (underfitting). The choice of an appro-
priate h often involves cross-validation or some other form
of bandwidth selection strategy.

3.3. Self-tuning Bandwidth Kernel Regression

Kernel regression, by its standard definition, utilizes a con-
stant bandwidth h that is applied uniformly across all data
points. However, this one-size-fits-all approach might not
be the most suitable in scenarios where the data exhibits
spatial imbalances, as is the case in our study.

In regions where data points are sparse, the lack of neigh-
boring points could potentially lead to unrepresentative av-
erages and, consequently, inaccurate predictions. To over-
come this, we propose the use of a larger bandwidth in such
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Figure 5. Visualization of dense and sparse regions in the Georgia
dataset.

Figure 6. Visualization of dense and sparse regions in the New
Mexico dataset.

areas, thereby encompassing more points for computation
and increasing the representativeness of the estimates.

To this end, we propose the self-tuning bandwidth in the ker-
nel regression framework (STBKR). The self-tuning band-
width mechanism adapts the bandwidth for each point based
on its surrounding density of points. The formula for our
self-tuning bandwidth kernel regression can be expressed as
follows:

ŷ(x) =

∑n
i=1 Kh(x)(∥x− xi∥)yi∑n
i=1 Kh(x)(∥x− xi∥)

. (7)

In this formula, we let h(x) = cRk(x)
2. Here, c is a pa-

rameter that is determined by cross-validation, and Rk(x)
denotes the Euclidean distance from a given data point x
to its k-th nearest neighbor. Notably, in areas where data
is sparsely distributed, the distance Rk(x) will be larger,
thereby leading to an increased bandwidth h(x).

This strategy of self-tuning bandwidth effectively addresses
the issue of spatial imbalance in the dataset. By allowing
the bandwidth to adapt based on the local data density, it en-
sures a more representative sampling of neighbors, leading
to more accurate and reliable predictions. Furthermore, the
choice of c through cross-validation aids in avoiding overfit-
ting or underfitting, further strengthening the robustness of
our regression model.

3.4. Data Preprocessing and Efficient Computation

The dataset under consideration presents a challenge due to
its high variation and the fact that only a single measurement
is taken at approximately half of the locations. This inherent
variability in the data leads to the need for a variance reduc-
tion technique, specifically, the application of a k-nearest
neighbor averaging method.

The k-nearest neighbor approach enables us to approximate
the value at a given point x by utilizing the mean of its k
nearest neighbors. Denote the k nearest neighbors to a given
point x as xn(x)1 , xn(x)2 , · · · , xn(x)k . The initial value y at
point x is substituted by the average of these neighboring
points as follows:

yavg(x) =
1

k
(yn(x)1 + yn(x)2 + · · ·+ yn(x)k). (8)

This averaging process inherently smoothens the dataset,
helping to alleviate the issue of high variance.

However, a secondary challenge presents itself due to the
size of the dataset. The computation of kernel regression
predictions across the entire test set can take up to several
hours, a prohibitively long duration for many applications.
To mitigate this computational cost while retaining the pre-
diction accuracy of our model, we resort to another variant
of the k-nearest neighbor method, this time employing a
weighted sum instead of summing over the entire training
set as depicted in Equation (5).

With the incorporation of a kernel function Kh(·) that intro-
duces a weighting based on the distance between the points,
the predictive function ŷ(x) is calculated as follows:

ŷ(x) =

∑k
i=1 Kh(∥x− xn(x)i∥)yn(x)i∑k

i=1 Kh(∥x− xn(x)i∥)
. (9)

By adopting this approach, we can preserve the accuracy
of the algorithm while dramatically reducing the computa-
tional time. This modification is instrumental in making the
kernel regression computationally feasible for large datasets,
thus striking a desirable balance between computational ef-
ficiency and predictive accuracy.

4. Numerical Experiments
4.1. Experiment Setting

We initiate our comparative study by partitioning the data
into training and test sets with a split of 80% and 20% re-
spectively. In our comparison, we feature our proposed self-
tuning bandwidth kernel regression method (STBKR) and
compare it with two baseline methods: The Gaussian pro-
cess regression (GP) and fixed bandwidth kernel regression
(FBKR). However, Gaussian process regression presents a
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Table 1. Errors in dense areas of Georgia dataset.

GP FBKR STBKR

MAE 245.62 83.03 81.6
MSE 144105.22 20746.26 19594.86
MNE 5524.22 2334.2 2248

Table 2. Errors in sparse areas of Georgia dataset.

GP FBKR STBKR

MAE 178.69 102.1 102.9
MSE 73267.2 47111.7 37534.83
MNE 2312.76 2399.2 1942.5

computational challenge when dealing with large training
data due to its requirement to compute the inverse of a mas-
sive matrix. We address this problem by sparsifying the
training data through downsampling, followed by applying
the Gaussian process to the thinned-out data.

To optimize the parameters h, k, and c for the other two
kernel regression methods, we implement a 5-fold cross-
validation on the training set. The loss functions we apply in
this study are Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Maximum Norm Error (MNE).

Furthermore, we segment our dataset into dense and sparse
regions. To achieve this, we first divide the map into a
15 × 15 uniform grid. Subsequently, we count the data
points within each region. Regions with a count higher than
the average are classified as dense, while the remaining ones
are classified as sparse.

Regarding the kernel regression methods, we tune the band-
width magnitude c and the number of neighbors k separately
in the dense and sparse regions. The motivation behind this
approach is the reduced quantity of points in the sparse re-
gions, which necessitates a larger bandwidth to include a
comparable number of neighbors. This tailored treatment
enhances the adaptability of our methods to the spatial dis-
tribution of the data, promoting better overall performance.

Besides predicting the connection speed, we also tried a
simpler task which is to predict whether an area’s connection
is served, underserved, or unserved. This distinction is
useful in policy-making, as it has been used to prioritize the
order of broadband network expansion.

• Served: Download speed ≥ 100Mbps and upload
speed ≥ 20Mbps.

• Underserved: Download speed ≥ 25Mbps and upload
speed ≥ 3Mbps and is not in served category.

Table 3. Parameters for dense and sparse areas in Georgia dataset.

FBKR STBKR

DENSE k = 5, c = 0.01 k = 10, c = 0.01
SPARSE k = 5, c = 0.05 k = 5, c = 0.05

Table 4. Parameters for dense and sparse areas in New Mexico
dataset.

FBKR STBKR

DENSE k = 5, c = 0.005 k = 5, c = 0.05
SPARSE k = 5, c = 0.075 k = 5, c = 0.02

• Unserved: The rest cases.

4.2. Prediction

In this experiment, we want to predict the score of each
location in the test set accurately. First, we use 5-fold cross-
validation on the training set to choose the best parameter c
and k in dense regions and sparse regions for both datasets.
The results are shown in Table 3 and 4.

For the Gaussian process, we do downsampling on training
sets to reduce computational costs. To utilize the training
data more efficiently and reduce the uncertainty in unmea-
sured areas, we split the map into a 15 × 15 uniform grid
and select training data uniformly in each grid. This makes
the training data spread more uniformly and thus greatly
reduces the uncertainty around the training set.

Then we compare the three methods separately in dense
areas and sparse areas of the Georgia and the New Mexico
dataset.

Upon analysis of the experimental results, it becomes ap-
parent that the Gaussian Process (GP) regression underper-
forms in regions of higher data density compared to those
characterized by sparsity. This deficiency may be attributed
to the employed downsampling technique, which uses a
uniform distribution of training data across the spatial do-
main, thus failing to sufficiently represent areas of high data
concentration. Furthermore, GP demonstrates much worse
performances in comparison to kernel regression methods
across both region types. This can be ascribed to GP’s in-
herent limitation in handling large volumes of training data.
Despite the allocation of 80% of the total data to the train-
ing set, the downsampling process results in a mere 10%
of the data being used for training GP. In stark contrast,
kernel regression methods exhibit the capacity to effectively
utilize the entirety of the training set, leading to superior
performance.

In a comparison of the standard kernel regression method

6



Mobile Internet Quality Estimation using Self-Tuning Kernel Regression

Table 5. Errors in dense areas of New Mexico dataset.

GP FBKR STBKR

MAE 172.31 53.13 54.55
MSE 80417.66 9224.37 8950.31
MNE 3038.29 1055.09 1049.89

Table 6. Errors in sparse areas of New Mexico dataset.

GP FBKR STBKR

MAE 115.3 77.34 77.55
MSE 33754.41 31870.79 24624.49
MNE 1905.78 1172.39 1057.99

and the proposed self-tuning kernel regression, our method
consistently manifests superior performance in both regions
across the datasets in question. While the Mean Abso-
lute Error (MAE) remains relatively consistent between
the two kernel regression methods, our self-tuning method
exhibits a marked decrease in Mean Squared Error (MSE)
and Maximum Norm Error (l∞ error). This indicates that
our method offers enhanced predictive accuracy in those lo-
cations deemed more challenging, aligning with the primary
objectives of our research.

4.3. Classification

In this section, we classify locations into three types: served,
underserved, and unserved regions. For the Georgia dataset,
we have 48% served, 49% underserved, and 3% unserved
areas. In the New Mexico dataset, 21% are served, 60% are
underserved, and 19% are unserved. This shows significant
differences in mobile connectivity between these two states.

We use the three methods discussed previously to predict
both download and upload speeds. Each point in the test
set is then classified based on these predictions. The final
accuracy of this classification is provided below.

From the table 7 and 8, we can see that our proposed method
still generates a more accurate classification in all cases
except the sparse region in the Georgia dataset. However,
the difference is very small in that case, which does not
obscure the overall advantage of our method.

5. Conclusion
In this work, we focus on the cellular network quality esti-
mation based on Ookla open dataset. We proposed a novel
self-tuning bandwidth kernel regression method (STBKR)
for the specific problem on two different datasets. The diffi-
culty of the problem comes from data imbalance and high

Figure 7. Top-left is the original test data after data averaging. Top-
right is the prediction of GP. Bottom-left is the prediction of kernel
regression. Bottom-right is the prediction of self-tuning kernel
regression.

Table 7. Classification accuracy on Georgia dataset.

GP FBKR STBKR

DENSE 52% 86.6% 88.3%
SPARSE 67.4% 86.2% 85.9%

variation. We compared our method with two established
approaches: the Gaussian process (GP) and the basic kernel
regression. Our findings indicate that GP struggles with the
dataset, especially in dense regions, whereas both kernel
regression methods perform impressively due to their ability
to employ the entire training set effectively.

Our method consistently shows superior performance over
the other two baseline methods, particularly at locations
with challenging conditions. This is further validated in our
classification experiment, which seeks to categorize various
locations based on connectivity conditions. Despite substan-
tial differences in mobile connectivity across the datasets,
our proposed method demonstrates superior classification
accuracy.

To summarize, our self-tuning bandwidth kernel regression
method offers a promising alternative for dealing with large
datasets, delivering high predictive accuracy and effective
classification performance across diverse regions. Its su-
periority over the Gaussian process regression and fixed
bandwidth kernel regression methods substantiates its po-
tential as a valuable tool in data analysis.
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Figure 8. Top-left is the original test data after data averaging. Top-
right is the prediction of GP. Bottom-left is the prediction of kernel
regression. Bottom-right is the prediction of self-tuning kernel
regression.

Table 8. Classification accuracy on New Mexico dataset.

GP FBKR STBKR

DENSE 27.4% 88.7% 91.3%
SPARSE 20.8% 90.9% 93.3%
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