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Abstract

Human mobility datasets collected from personal mobile device locations are integral to

understanding how states, counties, and cities have collectively adapted to pervasive social

disruption stemming from the COVID-19 pandemic. However, while indigenous tribal com-

munities in the United States have been disproportionately devastated by the pandemic, the

relatively sparse populations and data available in these hard-hit tribal areas often exclude

them from mobility studies. We explore the effects of sparse mobility data in untangling the

often inter-correlated relationship between human mobility, distancing orders, and case

growth throughout 2020 in tribal and rural areas of California. Our findings account for data

sparsity imprecision to show: 1) Mobility through legal tribal boundaries was unusually low

but still correlated highly with case growth; 2) Case growth correlated less strongly with

mobility later in the the year in all areas; and 3) State-mandated distancing orders later in

the year did not necessarily precede lower mobility medians, especially in tribal areas. It is

our hope that with more timely feedback offered by mobile device datasets even in sparse

areas, health policy makers can better plan health emergency responses that still keep the

economy vibrant across all sectors.

Introduction

During the onset of the COVID-19 pandemic in the United States (US), unprecedented pre-

ventative measures such as stay-at-home (SAH) and social distancing orders were enacted by

local, state, and federal governments to lower the case rates of virus transmission. Despite the

apparent success of these orders and increasing compliance with masking and personal dis-

tancing through 2020, the case rate per capita among Native American populations in Califor-

nia (CA) was consistently more than twice as high as that of the lowest-affected population

group [1]. As late as August 2021, American Indians and Native Alaskans experienced almost
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100 more cases per 100, 000 people than the state average while making up only 0.5% of the

population [2].

Since March 2020, California state-wide public health orders that nominally reduced

human mobility and controlled face-to-face interactions were rarely motivated by data-

driven analysis of mobility behaviors. Instead, mobility-restricting decisions were based on

aggregate measurements of COVID-19 case totals and growth rates in the preceding days

[3–5]. These metrics are inherently delayed from representing the true situation of human

movement, and thus COVID-19 transmission, by depending on case records from voluntary

testing of symptomatic or asymptomatic individuals. Test results must also be aggregated

over geography (counties) and time (days or weeks) to protect sensitive information. Han-

dling this aggregated data requires the assumption that testing was uniform over a county

and therefor adequately captured residence location and individual demographics. These

assumptions have proven unreliable especially in low-infrastructure areas of the United

States [6–8].

Mobile device location data has provided key insights into human behavior in response to

the COVID-19 pandemic [9–11]. Public datasets showing human mobility are a promising

alternative to weekly case totals for assessing a population’s immediate response to distancing

orders [12]. Mobility can be updated daily and correlates both to likelihood for new case infec-

tions (e.g., predicting growth rate) and to economic impact on areas with diverse demograph-

ics [10]. However, publicly available mobility datasets are highly limited by population

representation and the need to aggregate over time and space to preserve anonymity [13].

Common biases are well-known [14] and are most often avoided by dropping areas of low

information density from an analysis. Legal boundaries of Native American tribal reservations

are often relegated to remote areas and historically struggle with a lack of communications

infrastructure, making these areas highly likely to be dropped from mobility analysis. Tribal

data sparsity is further compounded by the fact that residents typically have fewer devices con-

tributing to datasets relative to the number of devices per user in more urban and non-tribal

areas [15]. However, the need to characterize the spread of COVID-19 and the efficacy of dis-

tancing orders has made it essential to understand the non-standard mobility trends in hard-

hit marginalized and rural communities.

We address this challenge by exploring census block group (BG) clusters of varyingly sparse

mobility data gathered from personal devices in rural, tribal, and urban areas. We demonstrate

how two predominant analysis methods, mobility time series aggregation and linear correla-

tion between mobility and COVID-19 case growth, can produce meaningful results in these

areas of sparse data so long as decision trade-offs in the calculation process are well-under-

stood. In this paper we make the following contributions:

• We analyze precision ranges on time series medians and Pearson correlations with case

growth to characterize sparse mobility data. We find that, as a rule of thumb, these methods

are at best half as precise in rural and tribal areas as they are in rural non-tribal areas.

• We employ this precision bound to interpret mobility results in southern California to

understand differing responses across rural, urban, and tribal areas to COVID-19-related

federal and state distancing mandates throughout 2020.

• We find that mobility through urban tribal areas remained consistently low relative to base-

line throughout 2020, despite a high correlation with cases in the surrounding county.

• We find that mobility in all areas of southern California, whether urban, rural, or tribal, cor-

related less strongly with case growth past the initial first wave of cases through May 2020.
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These findings are consistent with similar recent work that concentrates on city-, county-,

and state-level trends, discussed in the next section. The remainder of this paper surveys

related research, presents our mobility and case datasets along with significant dates that drive

our analysis, demonstrates our precision calibration approach, and studies how well these cali-

brated analyses allow us to characterize mobility through the year in context of case growth

and distancing orders.

Background and related work

Our work addresses multiple urgent questions for which extensive research has already been

published in response to the pandemic. In this section we highlight related work that most

closely complements this one, and also indicate the breadth of ongoing alternative research

directions.

Mobility as an indicator of future case growth

No one standard metric currently defines “mobility”, but several different metrics have been

shown to correspond strongly with case growth, such as home-dwell time [16] or daily dis-

tance traveled [17]. Publicly-available datasets collected from mobile device location data

([16–23]) typically use a visit-based metric (such as Google [18] and SafeGraph [16]), a dis-

tance-based metric (such as Descartes Labs [17]), or a combination of both (such as Cuebiq

[21] or Apple Mobility [22]). Regardless of the exact metric, these datasets are typically aggre-

gated at the level of counties or states and fail to capture important differences arising from

urban, rural, or other socio-demographic distinctions. Google’s Community Mobility reports

explicitly state their metric is not intended for characterizing differences across urban and

rural lines [24].

Mobility at a variety of geographic resolutions (including country, state, county, and city)

has been shown to strongly correlate with county-wide COVID-19 case growth, prompting

the need for more granular mobility data to map human movement with pandemic spread

[25–27] in the future. Device-based mobility tracking has applications in estimating, predict-

ing, and preventing the propagation of COVID-19 in communities around the world [28–31].

Correlation analyses between mobility and case growth must compensate for auto-correlation

and inherent seasonality in both raw datasets [32]. Similar to previous research, we use a

14-day average of both mobility and case growth and correlate over periods greater than 100

days to capture the linear correspondence between the broader changes over this time rather

than the inherently noisy day-to-day correspondence [33, 34]. Interpreting pandemic spread

requires a number of innovative mobility-based metrics [29, 33]. Since publicly available data-

sets of COVID-19 case counts are most commonly presented at the county level [35], prior

attempts to categorize case data differences between urban and rural areas rely on county-level

classifications [27, 36, 37] rather than intra-county differences.

Our work considers census block groups (BGs) to distinguish urban, rural, and tribal cate-

gories of area inside a county and uses mobility through these category clusters to identify

unique trends.

Mobility and socio-economic demographic factors

Extensive work since 2020 infers associations between mobility and a population’s social attri-

butes. Common difficulties of interpreting such datasets are well-explored [14], but most prob-

lems are avoided by using larger-granularity datasets aggregated by state or county. The effect

that limitations such as data sparsity or variation in population density have on a final analysis

is difficult to quantify meaningfully. However, the disproportionate impact of the pandemic
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on certain communities has shown that understanding the spread of COVID-19 in areas

where mobility data holds these limitations is critical [8, 38].

Established work often explores analytical methods of comparing census block group (BG)-

level home dwell time (the amount of time spent in the BG where the device overnighted for

the most recent weeks) with various socio-economic attributes concentrated on cities [10, 11].

Another alternative is to cluster BGs into groupings of at least a thousand [32]. In the latter,

the authors indicate that health policies need to account for the different abilities of people in

these clusters to successfully stay at home, but do not explore methods of accounting for such

limitations. Systematically characterizing such disparities for underrepresented minorities in

the US remains a field of ongoing exploration [39]. Our work quantifies the amount of varia-

tion introduced into calculations from geographical variation of population and sample biases,

and finds consistent trends that emerge through the noise.

Distancing order outcomes and utility of mobile device data

Early research demonstrated that social distancing orders succeeded in reducing wide-scale

mobility ([9, 25, 33]). However, subsequent studies have shown that at a more local level, these

orders may have increased essential travel or enabled more case exposure in close-knit com-

munities [32, 34]. To date, widespread attempts to characterize and anticipate case growth

with human mobility metrics fail to capture the essential behavior differences inherent

between urban, rural, and especially Native American communities [40, 41].

Early in 2021 the CA government introduced the Health Equity Metric, a strategy for

ensuring counties account for case growth rates in their most at-risk communities before pro-

ceeding with order changes [3]. Although this metric attempts to scrutinize case rates in mar-

ginalized areas, this measure still depends on more extensive testing after cases have already

been transmitted. In contrast, deeper analysis of human mobility from mobile device datasets

may have been able to preempt case transmission opportunities [13, 42]. This work examines

mobility and case trends in areas that may not be well-characterized by either testing initiatives

or wide-scale mobile device data analysis.

Materials and methods

Datasets

We draw from four sources of data for this study: (i) a mobile device trajectory dataset aggre-

gated at the level of census block groups (BG) from a location services company called Sky-

hook; (ii) daily COVID-19 case totals at the level of counties from state health departments

provided by the Centers for Disease Control and Prevention (CDC); (iii) population and geo-

graphic boundary information for both tribal lands and BGs from the US Census Bureau; and

(iv) selected COVID-19 event information and distancing order progression from county and

state publications or various news articles. We describe each of these in turn below.

Mobility data from Skyhook. Skyhook offers location services to third-party apps that,

with user consent, log anonymized records of user mobile device location [43]. An app sends

new location requests prompted by service-specific needs such as advertising, geo-fencing trig-

gers, or navigation updates. Requests can be triggered as frequently as once per second. Once

triggered, Skyhook’s integrated location service calculates an updated position for that device

using GPS, cellular, Wi-Fi, Bluetooth, and LP-WAN networks, as available, on a variety of per-

sonal mobile devices. It is compatible with Android, Windows, and iOS operating systems.

Skyhook estimates between 1% and 5% of the US population contributes to their dataset, with

up to 20% in some urban centers.
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Skyhook aggregates location data over BGs for each day of 2020 and includes a unique met-

ric called bounding box itinerancy: the diagonal of the bounding box around the total area trav-

eled by any device that appears within the geographic and time aggregation boundary (i.e.,

each BG and day). This metric approximates the better-known radius of gyration, which

requires calculating the center of mass of all locations as well as the root mean square of maxi-

mum trajectory points. Itinerancy is faster to calculate and captures the maximum distance

traveled by a device each day, averaged over all devices recorded in a BG during that day. Per-

sonally identifiable information, such as typical routes or starting points, is not disclosed.

To capture mobility in California (CA), a single aggregate itinerancy entry is added to the

dataset for each of the 23, 322 BGs and the 365 days between January 1 and December 31,

2020. These total to more than 8 million entries, each including daily itinerancy average and

the number of devices crossing that BG during that day that contributed to the average. Fig 1

shows daily itinerancy over 2020 in CA for five different aggregation measures. Note that

major mobility trends are present in both the median and the mean. We use the median itiner-

ancy measure for the remainder of this paper so as not to include skew from uncommon long-

distance trips.

We consider itinerancy to be a specific metric for measuring mobility in general, and in that

sense use the terms interchangeably. We later define a mobility time series that shows the rela-

tive change in itinerancy from a baseline set in the first months of 2020; this usage of the term

mobility is to align our discussion with the widespread convention of denoting general move-

ment changes as a percentage of some baseline. In either case, trends shown through the mobil-
ity time series are equally evident in the specific itinerancy time series. We later use the raw

itinerancy dataset in some intermediate calculations, but at times continue to refer to it as

mobility in the general sense.

This paper also deals with specific metrics of dataset sparsity. We use this term to refer

both to the relatively low (compared to previous work) populations of people in the BGs of

interest to this study, and to the varying sizes of device counts that contribute to the Skyhook

dataset each day from those same BGs. We also refer to the second factor specifically as

representativity.

Daily COVID-19 case totals. The CDC curates county-level case infection records [44]

based on daily updates from state Departments of Health. These numbers represent positive

tests reported on that day; unreported cases are not reflected in the data. We examine case

infections rather than deaths since we focus this study on understanding the relationship

between human mobility and case spread. Daily case totals for CA are shown in Fig 2.

Population and geography. Population data for census blocks, census block groups, and

counties are provided by the 2018 American Community Survey [45]. Geographic boundaries

are sourced from the US Census Bureau [46]. Area calculations use the California Albers pro-

jection with EPSG code 3309.

Fig 1. Daily itinerancy aggregation measures in California throughout 2020. Itinerancy averages for each block

group are further aggregated over the entire state in five different measures to show the range of variation. Major

mobility trends are apparent in all aggregation measures except for the minimum. For the remainder of this analysis,

the median is used for mobility except where otherwise noted.

https://doi.org/10.1371/journal.pone.0276644.g001
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Key dates

Table 1 shows characteristics of the mobility dataset with breakdowns through regions in CA.

We follow region assignments from the state’s COVID-19 health guidance as used for region-

wide distancing orders [3]. A set of characteristic time ranges are listed below over which

mobility trends in all regions shared relative milestones. Significant event dates are gathered

from [47, 48]:

• Post-order (March 19–December 31): The state-wide SAH order on March 19 marks the

clearest statewide behavior change, when mobility dropped by about 20% in a few days even

after slowly decreasing from baseline during the previous month as individual counties

announced local restrictions [47]. The following time ranges are subsets of the Post-order

range.

• Dip (April 6–19): these two weeks contain the lowest statewide mobilities. Note that new

weekly trends appeared in late March and April where mobility on weekends decreased

more than mobility during the week, relative to January–February behavior.

• Rise A (April 20–May 31): Mobility begins to return towards normal, but the strength of the

new weekly trends soften around the end of May. Beaches reopened statewide on May 13.

• Rise B (June 1–July 24): Mobility continues to rise cautiously towards normal. New weekly

trends return more towards pre-order norms, likely as more businesses started reopening.

51 out of 58 counties reopened most businesses as of June 15, but indoor dining closed again

on July 13.

• Summit (July 25–August 20): The highest relative mobility since the SAH occurs in these

two weeks in all regions. Schools reopened concurrently or shortly after throughout the sec-

ond half of August.

Fig 2. Total daily cases. This total indicates positive test results summed over the entire state from county-level

reports each day.

https://doi.org/10.1371/journal.pone.0276644.g002

Table 1. Characteristics of Skyhook’s BG-level mobility dataset.

Region Abbreviation Dates Days Block groups (BG) Samples (M) (% dataset) Counties (% state total) Pop. (M) (% state total)

All California CA Jan. 1–Dec. 31 365 23,212 8.5 58 39.1

Northern California NorCal Jan. 1–Dec. 31 365 539 0.2 (2%) 11 (19%) 0.7 (1.7%)

Greater Sacramento Area Sacra Jan. 1–Dec. 31 365 1,830 0.7 (8%) 13 (22%) 2.9 (7.3%)

San Francisco Bay Area Bay Jan. 1–Dec. 31 365 5,185 1.9 (22%) 11 (19%) 8.4 (21.4%)

San Joaquin Valley Valley Jan. 1–Dec. 31 365 2,458 0.9 (11%) 12 (20%) 4.3 (11.1%)

Southern California SoCal Jan. 1–Dec. 31 365 13,200 4.8 (57%) 11 (19%) 22.9 (58.4)

Census block groups (BGs), the basic geographical unit of our dataset, are distributed unequally throughout regions of CA. The Samples column shows the number of

records (in millions) for each region. One sample is present for each BG each day of 2020. The bulk of our analysis focuses on Southern California (SoCal), the region

with a majority of BGs along with corresponding mobility samples and population.

https://doi.org/10.1371/journal.pone.0276644.t001
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• Tiers (August 30–December 31): A new tiered system of tracking, introduced August 28,

imposed restrictions on counties depending on positive test rates, case totals from the previ-

ous week, and ICU bed capacity [3]. Mobility shows a significant drop and remains about

20% under baseline until the end of the year.

A final key time period encapsulates the “first wave” of cases, when case growth was ram-

pant before widespread preventative measures were in place. We use the date range February

19–May 31 to define this range.

Methodology development: Sources of imprecision

Two analysis methods are immediately useful for understanding mobility in the last year, but

are also highly susceptible to the effects of imprecision: grouping mobility time series with

medians, and correlating mobility time series with case growth. The data preparation steps for

each of these methods are diagrammed in Fig 3.

Many steps in handling mobility data are currently not within researcher control. The accu-

racy of the location services provider and the number of users contributing to the data are

important factors ([14]) that must be taken as-is from the dataset provider. These factors, dia-

grammed in the gray “Mobility Dataset Provider” box in Fig 3, are outside of the scope of this

analysis. Similarly, the choice of specific metric, as well as geographic and chronological aggre-

gation boundaries, are predetermined by the dataset provider. In this analysis we use the data-

set from Skyhook described in the Materials section: the metric is itinerancy, the geographic

boundary is census block groups, and the chronological boundary is 24-hour periods from

midnight to midnight.

Three analysis steps are under researcher control and introduce over- or underestimation

that can lead to imprecision in final results. These sources are indicated symbolically in Fig 3

as “Analysis Decision Points” by adding some difference δ into the calculation flow. While ulti-

mately the accuracy of any analysis is impossible to calibrate without time-consuming ground-

truth verification, we can examine how much imprecision is introduced into final results from

variation in these decision points.

Precision trade-off 1: Selecting a baseline to define mobility

Like most publicly available mobility datasets, we use a behavior baseline established in Janu-

ary and February of 2020 and publish daily mobility as the percentage difference in that day’s

measurement away from baseline [16, 18, 22]. In Fig 1, a starting date of January 5 is necessary

to avoid skewing calculations toward holiday travel around the New Year. General awareness

of COVID-19 increased between January 20 and March 20 as case counts grew in CA and

Fig 3. Conceptual diagram of analysis decision points. This paper quantifies how much imprecision can be introduced into final analysis

depending on trade-offs at each decision point.

https://doi.org/10.1371/journal.pone.0276644.g003
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counties began enacting emergency measures. Although different baseline end-dates may dis-

tort the mobility calculation for any one BG by up to 20%, their effect on aggregate calculations

is negligible. We use baseline dates of January 5 through February 6, a range ending about two

weeks before COVID-19 warnings became wide-spread. The first local and health emergencies

began to be issued in CA counties near the end of this baseline range [47]. Mobility median

calculations for the different regions of CA are shown in Fig 4.

Precision trade-off 2: Selecting cluster thresholds to label BGs on tribal

lands

The clustering decision point in Fig 3 defines which BGs will be labeled as tribal or non-tribal

and rural or urban. Our method introduces a sliding scale of labels that depend on the percent-

age that a BG boundary overlaps with a known legal boundary that is already labeled, drawn

from population and tribal land boundaries discussed in the Dataset section. By choosing dif-

ferent percentage values to serve as the threshold that defines which label a BG receives, we

can experiment with different sizes of clusters of BGs with the resulting label. This serves as a

proxy for varying the population and device totals contributing to the dataset. The next deci-

sion point compares the sensitivity of mobility analysis while varying clusters by percentage

thresholds and points out consistent trends that appear between different cluster types.

Labeling threshold variation and data sparsity factors. We assign all BGs two indepen-

dent labels: either urban or rural, and either tribal or non-tribal. We define a minimum

threshold for which a BG geographic boundary needs to overlap a pre-defined rural or tribal

boundary in order to be classified as rural or tribal, respectively. By varying this threshold

from 1% (least restrictive definition, includes the greatest number of BGs) to 100% (most

restrictive, fewest BGs), we can quantify how different geographic clusterings result in varying

data density. We then examine data sparsity factors like population make-up and device repre-

sentativity that appear in the dataset for each cluster. Many other factors impact data sparsity,

but these two are important bottlenecks that are quantifiable with the available data. Note that

a device that passes through a BG in a day and contributes to the dataset may not belong to a

resident of that BG. By varying the overlap threshold by which clusters are defined, this label-

ing scheme approximates the simultaneous variations of population and device representativ-

ity within our dataset.

We select four labeling thresholds to inspect for the remainder of this analysis: 1%, 25%,

50%, and 75%. Using thresholds above 75% reduces the number of tribal BGs to under 20 in

all of CA, or less than.01% of the overall dataset, and so the 75% threshold is our maximum.

Urban/rural and tribal/non-tribal labeling by threshold. We assign two regional cate-

gory labels to each BG according to the same threshold cutoff: either U (urban) or R (rural),

Fig 4. Regional median mobility. Mobility is the percentage of daily itinerancy change from a baseline established in

January and February, and is calculated independently for each BG. The median mobility over all BGs in each region is

shown here. Higher-population regions exhibit a more radical decrease in mobility than lower-population regions, a

pattern that we later show repeats even in more granular clusters of BGs.

https://doi.org/10.1371/journal.pone.0276644.g004
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and either T (tribal) or N (non-tribal). These categories are then combined to show: tribal

urban (TU), non-tribal urban (NU), tribal rural (TR), and non-tribal rural (NR) categories.

The US Census Bureau publishes urban/rural assignments to individual census blocks

using Tiger/Line geographical files [49]. To label an entire BG, we sum the number of individ-

ual blocks within the BG that are assigned the respective label. For a given threshold t 2{1, 25,

50, 75}, if t% or more blocks within a BG are labeled rural, then the entire BG in our dataset is

labeled rural; otherwise, the BG is labeled urban. For example, in CA when t = 50, rural BGs

have a median population of�1,100 with a max of�15,000. Urban BGs have a median at

�1,500 and a max at�39,000.

Tribal boundaries are released every year by the US government and rarely overlap neatly

with census boundaries [46]. To approximate clusters of mobility that mostly likely affect resi-

dents on tribal lands, we label all data points within a BG as tribal if the BG overlaps tribal

lands by t% or more. However, some BGs overlap less than t% with tribal lands but have a

majority of device activity falling within the tribal boundary. The Skyhook dataset includes the

daily average device location by latitude and longitude of all devices recorded within each BG

each day. If t% or more of a BG’s average device locations fall within tribal lands, we label that

BG tribal as well.

We then combine the U/R and T/N labels for each BG and consider mobility analyses in

each of the combined categories. Of all possible tribal BGs (both TU and TR), 89 of the high-

est-populated are in SoCal. Only 33 are in NorCal, 6 in the Valley, 4 in Sacramento, and 1 in

the Bay area. The remainder of this study focuses on SoCal to take advantage of this majority

subset of tribal BGs that all operate under similar regional COVID-19 restrictions throughout

the year.

Four category clustering schemes for SoCal are shown in Fig 5. BG totals, population

ranges, and device count ranges for each category and each threshold cutoff are shown in Fig

6. Unsurprisingly, the non-tribal clusters contain several orders of magnitude more BGs than

the tribal clusters as shown on the logarithmic scale of the y-axis in Fig 6a. Similarly, urban

clusters contain more BGs than rural clusters except with the least restrictive thresholds on

tribal lands (1% and 25%). In Fig 6b, population distributions within each threshold cluster are

more consistent across all thresholds in the NU category, whereas the NR category is affected

by the restriction on rural BG assignment. Although urban BGs are more numerous, they typi-

cally become more geographically concentrated into smaller neighborhoods in more populous

areas. Both populations (Fig 6b) and device counts (Fig 6c) are then typically lower for urban

areas than for rural areas. These two graphs show that TR clusters experience the most varia-

tion across threshold schemes in population and device counts. We examine the degree to

which variation in these factors may affect even simple analysis methods to understand mobil-

ity in tribal areas during the differing regulation periods throughout 2020.

Precision trade-off 3: Time ranges for mobility grouping and correlation

Analysis method 1: Mobility averages and medians. Our final analysis decision point

examines mobility medians in all categories over the labeling schemes during the first wave of

cases in SoCal. Fig 7 shows distributions of mobility in SoCal immediately after the March 19

stay-at-home (SAH) order. Fig 7(a) shows the two weeks of lowest mobility (April 5–April 19)

and Fig 7(b) shows the subsequent three weeks as restrictions in SoCal slowly began loosening.

We refer to these periods as the “Dip” and “Rise A” as defined in the key dates. All labeling

schemes confirm that mobility in all categories reached a relative low during the Dip period,

then began a return towards baseline during the Rise. Here we see the effects of using different

labeling schemes to cluster subsets of BGs that characterize categories. Table 2 presents
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medians for each mobility category in each labeling scheme over two earliest time periods in

the year when new mobility patterns were being established. The tribal rural (TR) category in

particular shows a wide range of median results over different labeling thresholds. For the fol-

lowing discussion, we round results in the table to the nearest percentage point. According to

Fig 5. Urban/rural and tribal/non-tribal clustering variations for SoCal counties with tribal presence. BGs in

SoCal are labeled as urban (U) or rural (R) and tribal (T) or non-tribal (N) according to the percentage of constituent

blocks (for U/R) or area (for T/N) with that label. Shown here are block group labels for four percentage thresholds of

constituency, referred to as labeling thresholds: 1% (any rural or tribal makeup), 25%, 50%, and 75% (majority rural or

tribal makeup). The labels are cross-combined to create the following clusters: Blue areas are non-tribal urban (NU),

orange are non-tribal rural (NR), green are tribal urban (TU), and red are tribal rural (TR). This variation in cluster

labeling serves as a proxy for varying the underlying BGs that could be assigned each label, subject to different

interpretations of the definition of rural and tribal. Our precision analysis examines how much variation may be

introduced into final calculations of rural or tribal mobility depending on the clustering threshold, and considers the

corresponding variation in sample size, device density, and population that make up the mobility dataset in each

cluster. This figure was generated by the authors from the public census datasets noted in the Materials section [45, 46,

49].

https://doi.org/10.1371/journal.pone.0276644.g005

Fig 6. Variation in sparsity factors from labeling scheme thresholds in T/N and U/R category clusters. (a) Block groups

appearing in each cluster by different labeling thresholds. The number of BGs labeled rural (R) varies logarithmically

depending on threshold cutoffs, while urban (U) BG counts are more linear across thresholds. Tribal BGs show the expected

order of magnitude difference from non-tribal, but do not show visible trends at this scale. (b) Populations of clustered BGs

vary more widely in rural BGs across clusters than in urban, with non-tribal BGs showing higher outliers. Tribal clusters

show greater logarithmic variation than non-tribal. (c) Device counts show similar trends as population, with more linear

variation over thresholds for the TU cluster.

https://doi.org/10.1371/journal.pone.0276644.g006
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the 1% scheme, TR dropped to a median of -34% of its own baseline. According to the 75%

scheme, this median drop was only to -17%. Since the 75% scheme is more restrictive than the

1% scheme, it is more likely to include the few BGs that have larger areas with fewer towns. A

greater distance between urban centers suggests any travel will be higher within that BG, driv-

ing up the average daily itinerancy. Similarly, during the Rise, TR appears to increase up to

just under -3% according to the 75% scheme, but only increases to -21% in the 1% scheme.

Nevertheless, all labeling schemes show that the tribal-urban (TU) cluster mobility decreased

more than any other category, while TR mobility decreased the least in the months following

the SAH.

This precision analysis confirms our intuition that labeling schemes are a proxy for varying

how heterogeneous a dataset might be in sparsity. A mobility average in a category in one

county, or region, might involve a different range of populations or representativity. However,

no matter the scheme, our results show that relative differences between categories are

consistent.

Depending on what classification decision a local health authority uses to define tribal or

rural mobility, time-groupings of mobility medians can show differences in conclusive values

of up to 18 percentage points: the difference between -34% and -17% in the Dip is 17 points,

and the difference between -21% and -3% in the Rise is 18 points. This difference is more than

Fig 7. SoCal mobility in categories from different threshold labeling schemes directly following the March 19

SAH. We here use a symmetric logarithm scale to allow positive and negative outliers to be visible while presenting the

central values within the shaded linear range (-85, 45). Box extents show the 25th to 75th percentiles, and whiskers show

5th and 95th. The linear range was chosen to cover the entire whisker extent of all clusters, while allowing outliers to be

plotted logarithmically. A comparison of medians across thresholds and categories is shown in Table 2. We explore the

relative ranges of mobilities in each cluster across thresholds. The important takeaway is that all labeling thresholds

produce similar relative relationships between mobility ranges of clusters, indicating we can expect to see consistent

trends between clusters no matter which threshold we choose for analysis.

https://doi.org/10.1371/journal.pone.0276644.g007

Table 2. Median daily mobility across different labeling schemes for cluster categories in SoCal. The “Range” row shows the absolute difference between the lowest per-

centage point and the highest in each column.

Dip: April 6–19 Rise A: April 20–May 31

Labeling Scheme NU NR TU TR NU NR TU TR

1% -43.17 -37.67 -63.35 -33.92 -32.92 -25.04 -51.93 -21.52

25% -43.16 -34.01 -63.58 -29.46 -32.84 -21.01 -54.25 -19.16

50% -43.12 -31.68 -62.16 -30.50 -32.75 -19.10 -52.38 -18.26

75% -43.04 -29.54 -62.68 -17.23 -32.62 -17.75 -52.51 -3.25

Range 0.13 8.13 0.67 16.69 0.30 7.29 2.32 18.27

https://doi.org/10.1371/journal.pone.0276644.t002
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1/3 of the median mobility drop in all of SoCal during the same time period (�-47 during the

Dip), and so can cause significant interference with interpreting general results in a tribal set-

ting. In contrast, non-tribal rural mobility (NR) only varies by up to 8 percentage points: -37

to -29 in the Dip is 8 points, and -25 to -17 in the Rise is also 8. Non-tribal urban (NU) and TU

vary significantly less, but also had almost identical population spreads across threshold

schemes. Notably, TU results do not seem dependent on the sample size difference from NU,

nor on the variation of device counts between thresholds.

Where previous work has issued general caveats about the effects of population heterogene-

ity and device sparsity [14], we can now present a quantified observation on precision: mobility
medians in sparse areas near tribal lands may only be half as precise as medians in sparse non-
tribal areas.

Analysis method 2: Correlation between itinerancy and case growth. To explore the

relationship between movement changes in an area and subsequent case growth, we perform a

Pearson correlation between BG-level itinerancy and county-level case growth similar to the

method used in [33]. Case growth is calculated as the natural log of the day-to-day difference

of new cases, then averaged over a central rolling window of 14 days. The correlated arrays for

itinerancy in cluster categories and case growth are shown normalized in Fig 8. Limitations of

this method are discussed in the Background section, but for periods of more than 100 days

where we can account for expected seasonality, a 14-day average of both itinerancy and case

growth shows the linearity of similar trends. We average itinerancy in cluster categories and

compare each category to average county-wide case growth independently.

Still following the procedures described in [33, 34], our next step is to inspect the time delay

between exposure to the virus and the positive test being entered into the case dataset. This

delay time remains uncertain, but guidance from the CDC continues to suggest a waiting

period of 14 days is necessary to be certain symptoms will not arise after a possible exposure

[50]. We delay itinerancy up to 30 days behind case growth to account for outliers. For each

day of lag, the lagged itinerancy and case growth arrays are correlated to produce a Pearson

coefficient and p-value. We then examine which lag time produces the highest correlation

coefficient. Here, our analysis diverges in order to account for the sparsity in our dataset. With

sparser mobility data, we find that this peak time is highly susceptible to noise in the correla-

tion vectors. In our experiments, the maximum coefficient uniformly occurs near the latter

end of the feasible range of 8–25 days [33, 51]. Fig 9 shows that the highest coefficient for cor-

relations in all cluster types consistently falls at exactly 23 days. This exact maximum coeffi-

cient is a product of the similar seasonality of mobility vectors in all clusters. Notably, all

coefficients with sufficiently low p-values during the entire reasonable lag range tend to fall

within 30% of the peak coefficient, and often within 10%. To avoid naïvely assuming the maxi-

mum coefficient is as meaningful in sparse datasets as in the more dense datasets that drove

this analysis, we instead assume the actual lag days must fall within the reasonable range and

Fig 8. Categorical mobility averages and case growth arrays for all SoCal counties excluding LA and OR. Cluster

categories are determined with the 50% scheme. These arrays cover 102 days in the first wave of cases, February 19—

May 31. All cluster mobilities share similar seasonality, but our subsequent analysis finds that tribal mobility

correlation is consistently higher with respect to case growth in the surrounding county.

https://doi.org/10.1371/journal.pone.0276644.g008
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simply take the median of all coefficients for lags between 8–25 days whose corresponding p-

value is�0.01. The coefficient median is shown with the gray line spanning the reasonable lag

range in all subplots of Fig 9.

We find distinctly different behaviors when considering just Los Angeles and Orange

county separately from the rest of SoCal. These two counties contribute a majority of non-

tribal urban BGs to the SoCal dataset, but do not include any tribal BGs. We exclude these

counties for the moment. Table 3 shows the reasonable median coefficient with two important

trends that appear across all labeling schemes: first, mobility through TU clusters consistently

correlates more highly than any other category with county-level case growth. Second, rural

categories consistently correlate less highly with case growth, for both tribal and non-tribal

areas. Interestingly, this result is opposite from a similar study in New Mexico examining case

growth and mobility on tribal lands including Navajo Nation [34]. We theorize that the differ-

ence is again related to differences in population density, both for Native Americans and in

general, between California and New Mexico.

Increasing the restrictiveness of the labeling scheme reduces the number of BGs in tribal

categories and rural categories independently. This sample size reduction produces a stronger

effect on the difference between U and R correlation results than on the difference between T

and N results. However, Table 3 shows correlation coefficients for TR can vary across labeling

schemes twice as much or more as coefficients for NR. NU and TU correlation coefficients are

not strongly affected by labeling scheme differences. This consistency is predictable since, as

shown in Fig 6, populations and device counts do not vary as strongly across urban schemes as

they do in rural. Even though the scale of variation is an order of magnitude smaller in the case

of correlation coefficients than in the case of mobility medians, we see a similar pattern:

Fig 9. Pearson correlation over lag times. Clusters are shown for all SoCal counties excluding LA and OR, and follow

the arrays shown in Fig 8. Lag times capture the possible time between exposure and positive testing. While the

maximum correlation coefficient appears for all clusters at 24 days, we include the median of the reasonable lag range

(gray bar) suggested by the CDC.

https://doi.org/10.1371/journal.pone.0276644.g009

Table 3. Median Pearson coefficients across labeling schemes during the first wave.

Scheme NU NR TU TR

01 0.6512 0.6466 0.6710 0.6483

25 0.6521 0.6430 0.6651 0.6088

50 0.6524 0.6355 0.6632 0.6267

75 0.6526 0.6265 0.6632 0.5720

Range 0.0014 0.0201 0.0078 0.0763

During the first wave, February 19–May 31, the Range column shows the sensitivity of the correlation coefficient to

differences in cluster labeling scheme. Tribal areas are more than twice as sensitive as their non-tribal counterparts,

while rural areas are orders of magnitude more sensitive than urban.

https://doi.org/10.1371/journal.pone.0276644.t003
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correlation analysis on a sparse mobility dataset in tribal lands in SoCal is at best only half as

precise as in the rest of the region.

Reflections on the utility of precision bounds

The bounds on median and correlation analysis that we have described in the previous section

accomplish two purposes. First, they confirm that mobility patterns in the indicated category

clusters are distinct and detectable in this dataset despite skew from sparsity. Second, they sug-

gest that mobility calculations in tribal lands are likely to be only half as reliable as calculations

in non-tribal lands in SoCal. Future work should calibrate this strategy in other tribal and

rural areas across the US to develop quantifiable accuracy bounds on sparse mobility data in

these areas.

The first purpose is useful for confirming that the BG-level Skyhook mobility dataset can

distinguish unique behavior patterns in tribal, urban, and rural category clusters. Specifically,

the sparsity variation plots in Fig 6 show that TR clusters share population and device count

attributes with a subset of NR clusters that have lower-than-median values for these factors

(see Fig 6a and 6b). Although the median device counts in the TU clusters are quite close to

that of NR, median mobility through TU clusters is in the bottom quartile of the NR mobility

range. In contrast, TR populations and device counts fall towards the lower half of the corre-

sponding NR ranges, but TR mobility has both a higher mean than NR and a wider range.

Although TR and NR mobility characteristics nearly overlap even across labeling schemes, this

opposite behavior indicates a significant pattern is present: mobility in tribal areas during the
first wave of COVID-19 cases was distinct from mobility elsewhere in SoCal. Movement through

populated tribal centers was lower than the regional norm, but movement through more

remote tribal-adjacent block groups was higher than the respective regional norm. We explore

this behavior discrepancy further in the results.

The second purpose of attempting to bound mobility precision through data sparsity is to

motivate exploration in future research to better quantify the degree of difference between

tribal and non-tribal mobility behaviors. Our results further motivate the need for more accu-

rate pandemic-response datasets in rural and tribal areas. Until further data is available, how-

ever, our work prompts continued study of available sparse datasets in other critical areas,

such as rural supply lines for food, water, and medicine. Combined with other mobility indica-

tors, such as home dwell time, ability to work or learn from home, and mobility around rural

Internet hubs, these factors may provide further insights into how the economic and social dis-

ruption through 2020 lead to distinct movement behaviors in marginalized areas.

Results: Characterizing mobility in California throughout 2020

The precision boundaries explored in the previous section confirm that unique movement

trends exist in rural and tribal areas of California, and that our chosen dataset and analysis

methods are able to identify them. We can now confidently use these methods to gain insight

on the effectiveness of the distancing orders issued throughout 2020 in remote areas of SoCal.

Our goal is to discover whether mobility data can show categorical differences in behavior

responses to state and local mobility restriction orders. Fig 10 shows median categorical mobil-

ity and device counts in SoCal. Since we have established that notable trends are similar in all

labeling schemes, for simplicity we use the 50% threshold to define combined categorical clus-

ters in the following results.

The key date ranges described in the Materials section are noted in Fig 10a. These ranges

capture major events and visible behavior changes. Fig 10b shows that the median number of

devices contributing to the Skyhook mobility dataset also dropped drastically after the SAH
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and stayed low throughout the year. It is possible that this drop can be partially explained by a

reduction in travelers through SoCal, assuming visitors are more likely to travel long distances

in a day relative to locals. Note that lower mobility is not necessarily a direct result of lower

numbers of devices contributing to the dataset; rather, it is likely that devices that remained in

SoCal after the SAH moved around less relative to their own pre-order median. Several other

scenarios could also explain this drop, including reduced use of applications that trigger loca-

tion requests, or devices being turned off entirely. Later in the year the mobility medians for

each category eventually returned to within 10% of their pre-order medians, while device

counts remained approximately half of their pre-order totals in every category. The exception

to this median behavior is in TU clusters, and is discussed further in these results.

TU mobility decreased significantly more, proportional to its own baseline, than mobility

through any other area. Rural mobility for both urban and rural BGs dropped the least, with

TR medians appearing overall slightly higher than non-tribal rural (NR). We now explore the

implications of this trend with respect to county, state, and local COVID-19 regulations

throughout 2020.

Timeline of California restriction and reopening orders

The California Department of Public Health issued a series of distance-related orders that tie

closely with our choice of characteristic date ranges for mobility. After the initial SAH order in

March, California experienced several additional regulation periods that were intended to

limit movement to popular gathering places like restaurants and entertainment facilities. Mul-

tiple confounding factors make region-wide mobility trends hard to generalize. First, subse-

quent waves of cases became less closely tied to mobility as masking and 6-foot distancing

became more prevalent [40]. Second, the sequence of restriction and relaxation orders on

mobility happened county-by-county, resulting in county-specific movement trends. On

August 28, the beginning of the Tier time range, the state government implemented a tiered

system of reopening allowances for any county. This system was based on six criteria, includ-

ing the ability to administer a minimum number of tests and to maintain levels below critical

thresholds for both case rates and intensive care unit availability throughout previous weeks

Fig 10. Daily median mobility and device counts seen in each cluster category in SoCal through 2020. Tick marks

show every two weeks starting with the first Sunday in January. Ribbons in both (a) and (b) indicate the 5th–95th

percentile values of all BGs for each day. Significantly, although device counts in (b) initially diminish in the Dip, they

do not track the steady return to baseline seen in mobility in (a) throughout the year.

https://doi.org/10.1371/journal.pone.0276644.g010
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[3]. During the Tier time range, SoCal counties were able to independently move through

reopening phases coded by a tier color: purple, red, orange, and yellow. The first (and most

restrictive) purple tier required a curfew and closures of indoor dining facilities, and it limited

travel to essential trips. This caused a general mobility reduction through the remainder of

2020, but allowed different counties to change tiers independently. As cases continued to rise

through September and October, additional restrictions were introduced for counties in the

purple tier on November 19. These included a limited stay-at-home order that imposed a cur-

few and limited the sizes of gatherings [4]. On December 3 the residual SAH order was con-

verted to a regional SAH, requiring counties within a region to re-evaluate their tier metrics

each week. This order was supplemented on December 6 and December 22 with capacity

restrictions on grocery stores and a confirmation that the curfew required in the purple tier

was still in place. We note that all of these extensions and adaptations of the original SAH

order continued to urge the public to stay home and travel less in order to decrease the likeli-

hood of infectious interactions. However, none of these orders used population movement cri-

teria to determine reopenings or closures; rather, previous weekly averages for tests, cases, and

deaths were consistently the main metrics [3].

We inspect median mobility changes in SoCal as a whole until August, and then in individ-

ual counties through the end of the year. The continued increase of case rates into 2021 sug-

gests mobility restrictions were only effective when combined with other interventions such as

masking and vaccinations. We seek to demonstrate whether these distancing orders were able

to accomplish their purpose—to reduce mobility—and if so, whether mobility changed differ-

ently in the urban, rural, and tribal BG categories.

Median mobility changes surrounding key order dates

We select 14 key dates when the following distancing mandates applied to all SoCal counties:

issue or extension of a stay-at-home order; closure of private indoor businesses (i.e. bars, din-

ing); and closure of public or private outdoor locations (i.e. public parks, amusement parks,

beaches). Mobility medians in different BG categories before and after each order are used to

determine the public behavior response to the order. Where dates of significant events were

within a week of each other, the event impacting the broader economic sector is used. For

example, on June 28, venues that only served alcohol were closed. Just three days later on July

1, all restaurants, wineries, and bars were ordered to discontinue in-door dining. The latter

date is selected as the key date. For simplicity, we only consider individual county transitions

in Riverside County, which contains the majority of the tribal BGs according to the 50% label-

ing scheme.

Table 4 shows these key dates, the intent for the order to restrict or relax mobility, the extent

of which counties were affected by the order, and the median weekly mobility before and after

the order. For these order dates, we find the mobility medians for the two weeks centered

around the day of the order. The preceding week includes the day of the order along with the

six days immediately before. The following week is the seven days immediately after the order

date. Applying this analysis shows that overall, mobility in all categories never dropped as

strongly as in the initial March 19 SAH order. As the year progressed, these re-applications of

the SAH order appear less and less effective in actually reducing mobility. The effectiveness of

these orders on encouraging masking and maintaining a six-foot social distance is outside the

scope of this research but is addressed by related research noted in the Background section.

Notably, while every relaxation was followed by an increase of mobility, not every restriction

was followed by a decrease. The exception to this is Riverside on the purple tier exit on Sep-

tember 29, where the overall and NU median changes are very slightly negative. The low
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magnitude of these changes suggests that either more local restrictions were in place at the

city-level, or that residents in more urban areas had simply not heeded the restriction of the

previous week. In rural and tribal areas after this date, mobility did increase more significantly,

i.e., by several percentage points rather than by fractions of a percentage. In general, mobility

in rural areas decreased less after restriction orders towards the end of the year than earlier in

the year. The December 3 Regional SAH was followed by a decrease of less than half the mag-

nitude of the original SAH, except in the TU category. TR clusters also seem to have larger

magnitude changes, whether positive or negative, before and after a significant order event,

than any other category. Whether this is due to more actual movement through these areas, or

just another effect from imprecision, is a question that must be explored with more dense data.

A county-specific analysis is necessary to best understand the impact of orders during this

time. Similarly, the tier transitions that Riverside County made in October and December

accompanied very low magnitudes of decreases and slightly larger increases. The limited and

regional SAH orders are further obscured by seasonal tendencies to travel for holidays. While

the results in Table 4 cannot tell a complete story, they do suggest how strong or weak an effect

distancing orders had on actually controlling mobility. Overall, in the entire SoCal region and

in individual counties, our analysis shows that state or county distancing orders did not neces-

sarily succeed in their stated intention to diminish mobility on a week-by-week basis.

Mobility correlation with case growth

While distancing restrictions may not clearly create mobility drops, they certainly promote

awareness of the importance of masking and keeping personal distance in order to prevent

case spread even while gathering. Research emerging from 2020 that studies county, state, and

country-level datasets confirms that overall distance traveled correlates less and less strongly

with case growth through the year [51]. However, SAH renewals in November and December

still relied on distance reduction to ameliorate case spread. Linear correlation over these differ-

ent time periods can reveal how much the correspondence between mobility and case growth

Table 4. Events expected to influence mobility.

Date Order type Extent % change in mobility

Restriction Relaxation All NU NR TU TR

3 / 08 Public Emergency Riverside -5.6 -5.6 -3.7 -8.8 -8.5

3 / 12 Parks close All -4.9 -5.1 1.2 -9.1 -0.5

3 / 19 SAH All -14.8 -14.9 -13.8 -13.4 -4.3

5 / 07 Indoor businesses All 3.7 3.7 2.9 2.1 6.4

5 / 23 Parks reopen All 0.5 0.5 0.2 3.7 -8.0

7 / 01 Indoor dining All -0.9 -1.0 1.0 -1.2 -2.7

7 / 13 Other indoor activities All -0.8 -0.8 -1.2 -1.9 4.4

8 / 28 Tiers enacted All -1.9 -1.9 -3.3 -2.1 -0.6

9 / 08 Enter Purple Tier Riverside -6.6 -6.6 -5.2 -3.1 -14.9

9 / 29 Exit Purple Tier Riverside -0.6 -0.8 0.2 3.5 7.0

10 / 06 Enter Purple Tier Riverside -1.4 -1.5 -0.2 1.8 -9.0

11 / 21 Limited SAH All 4.6 4.5 6.4 -0.3 -5.3

12 / 03 Regional SAH All -5.7 -5.7 -7.6 -11.2 -1.6

12 / 21 Exit Purple Tier Riverside 0.8 0.7 2.2 3.0 -3.2

The “Extent” column defines the counties in SoCal to which the order applied, and the resulting “% change in mobility” applies only to BGs in those counties.

https://doi.org/10.1371/journal.pone.0276644.t004

PLOS ONE Pandemic mobility on tribal lands

PLOS ONE | https://doi.org/10.1371/journal.pone.0276644 December 14, 2022 17 / 23

https://doi.org/10.1371/journal.pone.0276644.t004
https://doi.org/10.1371/journal.pone.0276644


changed throughout the year. We now apply our correlation analysis to identify trends in rural

and tribal cluster categories.

Fig 11 shows categorical mobility averages over the characteristic time periods throughout

the year. We confirm that all categories remain generally consistent relative to each other, i.e.,

throughout the year, TU mobility remained the lowest relative to its own January–February

baseline, while TR mobility was consistently high and with the largest range of variation. As

masking and maintaining personal distance became more prevalent, the correspondence

between distance traveled and COVID-19 case growth became less prominent [11].

Table 5 shows Pearson coefficients for the linear correlation between each mobility category

and case growth for different periods through the year. The date ranges selected start just

before the first wave of cases started to appear, and end after each of the characteristic dates

throughout the year. All counties in SoCal are considered together, with categorical mobility

Fig 11. Mobility medians in SoCal during time ranges throughout 2020. All clusters use the 50% labeling scheme to define tribal and rural categories.

A symmetric logarithmic scale is used on the y-axis to show a linear scale from -100 to 100, with a logarithmic scale farther out to capture outliers.

Relative cluster trends are consistent throughout the year, though NR and TR show nearly indistinguishable distributions in the last months.

https://doi.org/10.1371/journal.pone.0276644.g011

Table 5. Median correlation coefficients during characteristic time ranges using a 50% labeling scheme for tribal and rural areas.

Category First Wave (FW)–Rise A Feb. 19–May 31

102 days

FW–Rise B Feb. 19–Jul. 24 157

days

FW–Summit Feb. 19–Aug. 29 184

days

FW–Tiers Feb. 19–December 31 317

days

All SoCal

NU 0.69 0.60 0.52 0.36

NR 0.67 0.55 0.45 0.32

TU 0.69 0.64 0.59 0.51

TR 0.66 0.57 0.53 0.33

LA & OR only (no tribal presence)

NU 0.70 0.64 0.54 0.38

NR 0.68 0.63 0.56 0.46

LA & OR excluded

NU 0.65 0.54 0.45 0.29

NR 0.64 0.51 0.41 0.28

TU 0.66 0.60 0.56 0.48

TR 0.63 0.54 0.50 0.30

https://doi.org/10.1371/journal.pone.0276644.t005
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and case growth averaged by day across BGs and counties respectively. Los Angeles (LA) and

Orange (OR) counties are considered separately against all other counties since these two con-

tribute the largest amount of non-tribal urban BGs (62%) to the overall dataset. The correla-

tions in non-tribal categories of these two counties alone strongly reflect the overall

correlation in SoCal, likely due to their majority contribution of NU BGs. The correlation

from the remaining NU BGs is presented along with that of tribal categories in the rest of

SoCal in the lower sections of Table 5.

The rows of Table 5 show the differences between categories during the same time range,

and columns show differences as the year progressed. Correlation over ranges beginning after

the initial mobility drop in March–April produced statistically insignificant p-values. To

understand how quickly this statistical deterioration happens in each category, we add each

characteristic date range progressively to the correlation. While TU coefficients tie with NU in

the first wave in all counties, TU maintains the highest coefficient throughout the year in

SoCal as well as in just the more rural counties with LA and OR excluded. In Fig 12, we see

case totals for these counties continue to rise significantly later in the year.

Interestingly, NR coefficients in all counties and in the rural county grouping remain con-

sistently lowest during all date ranges. In the urban grouping of just Los Angeles and Orange

Counties, however, NR shows a stronger correlation once the later date ranges are included. It

is possible that in the most urban counties, the BGs that were assigned to the rural category are

more similar in populations and device counts to the urban tribal BGs in the more rural coun-

ties. While we leave this question to future work, it is likely that a finer granularity of division

along urban–rural lines will reveal more consistent correlation distinctions.

We find that TU mobility maintained the lowest median throughout the year but still corre-

lates slightly more highly with region-wide case growth during the first wave than any other

category. This finding is consistent with similar analysis in NM around Navajo Nation which

found that mobility through high-population tribal areas correlated highly with state-wide

case growth [34]. Although the infection rate among tribal and indigenous populations of CA

are much lower than the devastating rates in NM, particularly throughout Navajo Nation in

2020 [52], our findings are consistent with the relatively high case rates per capita experienced

by CA indigenous peoples relative to most other races [2].

Conclusion

The use of mobile device location datasets to study a population’s behavior changes in

response to distancing orders to combat the spread of COVID-19 is a complex endeavor. Het-

erogeneity is rampant in datasets capturing mobility, COVID-19 cases, geographic locations of

Fig 12. Total cases for all SoCal counties, excluding LA and OR. Case totals are highest for Riverside, San Bernardino, and San Diego counties.

https://doi.org/10.1371/journal.pone.0276644.g012
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vulnerable populations, and the effectiveness of distancing orders. Mobile device datasets pres-

ent a unique challenge with irregular population representation and distribution among social

strata. However, these datasets are still some of the best sources of information showing real-

time movement of people. Understanding population mobility trends is critical for areas of

marginalized infrastructure. Our work presents a bounded estimate of mobility in different

sparse regions of California. We have demonstrated a controlled variation of sparsity factors

such as population density and number of devices contributing to a dataset, and show the

resulting range of mobility in coarse- and fine-grained analysis calculations. Overall, our find-

ings show that movement was decreasingly tied to case growth through the year while stay-at-

home order renewals were decreasingly effective in controlling movement. We have also

shown how useful even fairly sparse data can be in rural areas once precision variation is

understood. Our methods reveal distinct behaviors in rural and tribal lands where mobility

responses to COVID-19 distancing policies are unique compared to the regional norms.

Future work should expand this analysis to other tribal and rural areas of the US. We believe

that continued exploration of the accuracy and precision of mobility datasets can help federal,

state, and local leaders better react to future public health crises.
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