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Abstract—Despite widespread LTE adoption and dependence,
rural areas lag behind in coverage availability and quality. In the
United States, while the Federal Communications Commission
(FCC), which regulates mobile broadband, reports increases
in LTE availability, the most recent FCC Broadband Report
was criticized for overstating coverage. Physical assessments
of cellular coverage and quality are essential for evaluating
actual user experience. However, measurement campaigns can be
resource, time, and labor intensive; more scalable measurement
strategies are urgently needed. In this work, we first present
several measurement solutions to capture LTE signal strength
measurements, and we compare their accuracy. Our findings
reveal that simple, lightweight spectrum sensing devices have
comparable accuracy to expensive solutions and can estimate
quality within one gradation of accuracy when compared to user
equipment. We then show that these devices can be mounted on
Unmanned Aircraft Systems (UAS) to more rapidly and easily
measure coverage across wider geographic regions. Our results
show that the low-cost aerial measurement techniques have 72%
accuracy relative to the ground readings of user equipment, and
fall within one quality gradation 98% of the time.

Keywords-LTE, Aerial Networks, Mobile Broadband, Software
Defined Radios, Cellular Coverage, RSRP, UAS.

I. INTRODUCTION

Billions of users worldwide benefit from high-speed inter-
net access provided by LTE. However, economic incentives
often drive LTE and other broadband technology expansion,
concentrating deployment in populated urban areas. Econom-
ically marginalized and sparsely populated rural areas remain
underserved [1]. In the United States, for example, rural tribal
regions suffer from the poorest LTE coverage [2]. Even when
cellular providers claim coverage, poor signal quality can limit
achievable download data rates far below the mobile broad-
band threshold, defined by the U.S. Federal Communications
Commission (FCC) as a median speed of 10 Mbps [2].

For underserved regions in the United States, the FCC has
instituted incentive programs to offset provider infrastructure
deployment costs [3], [4]. These programs first determine the
bounds of existing coverage and identify coverage deficien-
cies by semi-annually collecting network connectivity reports
from commercial network operators. Every operator that owns
cellular network facilities in the United States participates in
data collection by submitting a Form 477 [5]. The reported
coverage area consists of geo-polygons using operator-defined

methodology. Based on this data, the FCC allocates subsidies
to incentivize commercial coverage in underserved regions and
verifies compliance.

The FCC publicly releases annual Broadband Deployment
Reports (e.g. [2]), as well as shapefiles for each operator that
indicate geographic coverage areas [5]. However, researchers
challenge their accuracy [6]–[8]; for example, Meinrath et
al. examined a public dataset of speed tests collected by the
Measurement Lab [9], [10] and demonstrated that broadband
access in Pennsylvania is much lower than claimed in the
report. This inaccurate over-reporting can be attributed to the
proprietary and often generous propagation models used by
network operators [11]. To validate the true state of mobile
broadband access, we need publicly controlled methods for
measuring coverage areas and signal quality, particularly in
regions typically underserved.

To audit provider-reported coverage claims, third parties
undertake independent measurement efforts. While the concept
of “coverage” remains imprecise [12], network parameters
such as the received signal strength (in terms of Reference
Signal Received Power (RSRP)) are typically used to estimate
the extent of network availability. Popular public crowdsourc-
ing platforms, such as CellMapper [13] or OpenSignal [14],
collect measurements from network users and calculate cel-
lular coverage and signal quality. Data from crowdsourced
efforts provide information over time and for a wide range
of devices, but these data cluster around major transportation
arteries, omitting communities outside of these areas. An
alternative collection strategy employs specialized equipment
with dedicated users. For example, wardriving typically in-
volves physically navigating difficult terrain in remote areas
to record on-the-ground measurements [15]. This method
enables greater control over the measurement process and the
geographic scope but scales poorly due to considerable time
investment and labor costs.

Because existing strategies suffer from the aforementioned
drawbacks, we need alternative solutions for measuring LTE
coverage and signal quality. An ideal strategy should enable
quick assessment using measurements of the RF landscape
throughout large areas (on the order of square miles), even
if hard-to-access. In addition, new strategies should provide
scalability with respect to equipment and human resources.
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Based on these criteria, off-the-shelf software defined radios
offer a viable solution. However, because SDRs can cost
anywhere between tens of dollars to a few thousand dollars,
it is important to study the relationship between precision of
readings and the cost of the equipment, to determine whether
more affordable equipment will suffice.

To reduce human effort of spectrum scans, Unmanned
Aircraft Systems (UAS) can carry payloads while maintain-
ing appreciable flight times. The availability of low cost,
programmable, highly agile unmanned aerial vehicles has
spurred interest in employing aerial RF sensing for cellular
coverage mapping [16], [17]. UASs enable coverage for large
geographic areas, which may be costly, difficult, or impossible
to cover on foot or in land vehicles. Network operators,
such as Verizon, already employ UASs for visually inspecting
equipment after natural disasters [18]. Extending UAS capa-
bilities to include signal measurements is an active area of
interest for a variety of wireless applications [19], [20]. These
extensions could further enable uses for scalable rural cellular
coverage mapping as well as post-disaster recovery efforts.
Small form-factor Software Defined Radios (SDR) with high
sensitivity, such as the RTL-SDR (RTL2832U chipset with
a Elonics E4000 Tuner), are proving increasingly useful for
LTE applications [21]–[23]. This SDR is perfectly suited for
UAS application. However, the high altitude of UAS flight,
relative to the ground, poses challenges to the efficacy of these
approaches. As antennas on LTE towers are provisioned for
ground transmission, the RF radiation pattern picked up at high
altitudes may not reflect signal quality on the ground [24].

In this paper, we assess the accuracy of a low-cost, small
form-factor RTL-SDR for sensing LTE eNodeB signal strength
over a wide area through integration with an off-the-shelf
quad-copter UAS. To do so, we first compare reading accuracy
of this airborne sensor with commonly used hardware for
ground-based wardriving approaches (i.e a spectrum analyzer
and a USRP). Further, because no existing studies systemat-
ically examine the effect of altitude on signal strength mea-
surements, we fly the UAS at varying altitudes across multiple
locations and examine how aerial signal sensing can be aligned
to ground-level measures. Because minimal previous research
compares observed signal strength between measurements
collected by user equipment (UEs) (i.e smartphones, tablets,
and hotspots) and UASs, we deployed four cellular devices
on the ground, each collecting measurements from different
cellular networks, and compared these measurements over the
same geographic area to those collected by the RTL-SDR
on the UAS. We look to the UE measurements as “ground
truth” because the UE readings capture examples of the actual
coverage and performance a user, in the given location, would
experience with UE.

Our findings reveal that the simple RTL-SDR has com-
parable accuracy to expensive solutions and can estimate
quality within one gradation of accuracy when compared to
user equipment. Further, we show that these devices can be
mounted on a UAS to more rapidly measure coverage across
wider geographic regions. Our results show that the low-cost

aerial measurement techniques have 72% accuracy relative
to the ground readings of user equipment, and fall within
one quality gradation 98% of the time. Our findings, taken
together, offer a detailed look at the efficacy of low-cost, public
controlled, aerial coverage and quality sensing.

This paper proceeds as follows: Section II overviews related
work. Section III explains the methodology and the corre-
sponding datasets, while our analysis and results are presented
in Section IV. Section V discusses impact of this study and
future work, and Section VI concludes the paper.

II. RELATED WORK

RF Spectrum Sensing with SDRs: Previous studies involving
wide-scale cellular sensing include analysis of GSM pollu-
tion [25] and propagation model verification for LTE signals
[26]. In one study, an SDR was mounted on a UAS to navigate
the flight path by LTE location signalling [27]. In contrast, our
study uses only passive sensing with a very lightweight SDR
to discover ground truth signal strength readings. We show
that low-cost equipment detects LTE availability to produce a
coverage map, using RSRP measurements, that aligns with the
ground truth UE measurements. In our study, we adapt a wide-
scale television white space sensing approach used by Saeed
et al. [28], but we adjust for LTE instead of TV frequencies.

RF Spectrum Sensing with UASs: Considerable prior work has
focused on identifying the application of UASs for cellular
networks. Batistatos et al. [16] study the variation in LTE
signal strength and SINR for both an underserved rural area
and an urban center. A UAS connected to an existing LTE
network monitored the LTE signals in a range of different
altitudes [17]. The authors found that at 60m to 100m above
the ground, LTE coverage probability climbs to 90% and the
received power gains 18 dB with respect to the ground level.
This work, however, did not compare measurements taken
from the aerial platform to measurements taken from a ground-
level UE.

Lin et al. [24] shed light on the applicability and perfor-
mance of mobile network connectivity to low altitude UASs by
analyzing downlink channel indicators, such as RSRP. While
the study in [29] examines the variation of RSRP, RSRQ,
and SNR throughout a drive-by style campaign in an urban
university campus using a passive monitoring device, little
prior work has explored the effective measurement of received
signal strength using SDRs accompanied by an adequate
validation from UE readings.

LTE Performance Measurement with RSRP:
Estimation of received signal strength plays a vital role

in many control plane operations, including inter- and intra-
eNodeB handovers [30]–[34]. Precise detection of RSRP plays
a crucial role in these handovers, as well as several diagnostic
methods in LTE networks. For instance, Anas et al. [35]
evaluate the performance of RSRP handovers in LTE. They
observe that a handover margin of 2dB to 6dB (RSRP) leads
to an optimal number of handovers without sacrificing much
of uplink SINR (for a specific range of user velocity). The
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effect of RSRP measurement bandwidth on the accuracy of
handovers is studied in [34], [36]. From a telecom provider’s
perspective, this suggests a need for up-to-date, accurate RSRP
space-maps for improving service quality.

Several prior works examine the relationships between
RSRP, RSRQ and SINR [37]–[40], but little work explores
the correlation between passive monitoring of LTE channels
and ground UE readings. In [41], the researchers examine
the viability of deploying LTE connectivity using UASs in
a rural area. Their results indicate that the coverage outage
level increases from 4.2% at an altitude of 1.5 m to 51.7%
at 120 m under full load conditions. Another study analyzed
a set of live network measurements conducted with an LTE
scanner attached to an airborne UAV [42]. The findings suggest
improved radio clearance as the UAV increases altitude. The
increase in the average number of detected cells, as altitude
increases, corroborates these findings. To the best of our
knowledge, our study offers the first look into conducting
reliable RSRP measurements with UAS using low-cost off-
the-shelf SDRs.

III. SYSTEM OVERVIEW AND METHODOLOGY

We collected ground and air measurements in two regions
in Rio Arriba county, New Mexico over a period of five
days, beginning May 28, 2019. For each region, we obtained
permission to drive through residential areas, as well as to fly
a UAS equipped with a sensor.

In this section, we describe the six unique RF sensing
methodologies employed in our analysis. Like all wardriving
studies, our work is necessarily limited in scale. However,
these ground measurements are uniquely useful for contrasting
the efficacy of each measurement technique. In all cases, our
methodology is generalizable. Figure 1 shows images of many
of our sensing set-ups.

A. Method 1: Ground-Driven User Equipment (UE) Sensing

In our wardriving campaign, we record signal strength read-
ings from four Motorola G7 Power (XT1955-5) phones, each
running Android Pie (9.0.0). We collect measurements using
the Network Monitor application [43]. An external GlobalSat
BU-353-S4 GPS connected to an Ubuntu Lenovo ThinkPad
laptop gathered geolocation measurements, which we matched
to the appropriate ground measurement by timestamp. We
outfitted each phone with a SIM card from one of the four top
cellular providers in the region: Verizon, T-Mobile, AT&T, and
Sprint. The phones recorded signal strength every 10 seconds
while we drove at speeds less than 10 miles per hour through
the areas of study.

B. Method 2: Ground-Driven Spectrum Analyzer

We gathered measurements on LTE channel center frequen-
cies with a high-precision Keysight N9340b spectrum analyzer
(SA) using a ham radio antenna capable of sensing signals up
to 3 GHz. The SA was transported inside the measurement
vehicle while the antenna was magnetically mounted to the
roof.

(a) UE (b) Ground Measurement Kit

(c) UAS (d) Stationary box.

Fig. 1: Sensing Equipment.

C. Method 3: Ground-Driven USRP

We collected center frequency readings with a Ettus Re-
search USRP B200, a versatile software defined radio widely
used for LTE and TV frequency experimentation and sensing.
The USRP measured the same set of LTE channel center
frequencies as the SA through a ham radio antenna placed
beside the identical SA antenna.

D. Method 4: Ground-Driven RTL-SDR

We also collected center frequency readings with a NooElec
RTL-SDR RTL2832U and Elonics E4000 Tuner, an inexpen-
sive software defined radio operating in the 55MHz-1100MHz
and 1500MHz-2300MHz ranges. The RTL measured LTE
channel center frequencies through a ham radio antenna placed
beside the identical SA and USRP antennas.

Unlike the USRP B200, which when inside a transportable
case is bulkier and more expensive, the RTL-SDR is low-cost
and protected in a smaller form-factor. This specific model
of RTL-SDR covers most LTE frequencies and is simple to
equip onto a UAS or deploy at a stationary site for long-
term monitoring. This ground-transported RTL-SDR serves
as a comparison point for the UAS and longitudinal sensing
experiments described subsequent subsections.

E. Methods 5: Aerial Sensing Platform

Our UAS consisted of a DJI Matrice 100 quad-copter,
as shown in Figure 1c. The UAS collected signal strength
readings via a NooElec RTL-SDR (the same model as used for
ground measurements) connected to a Raspberry Pi 2—Model
B on-board computer via USB. The location of the UAS was
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recorded from the Matrice 100 on-board GPS, sampling at a
rate of 50 Hz and using a UART connection to the Pi.

1) Horizontal Coverage Mapping: In one set of exper-
iments, we flew the UAS manually at varying speed and
elevation (in order to clear obstacles and keep the UAS in
line of sight) to map coverage. We attempted to cover the
same areas as covered by the UE and ground measurements.
For each geographic area, UAS measurements occurred on the
same day as the other data collection, but sometimes several
hours apart.

2) Vertical Experiments: To investigate the impact of eleva-
tion on signal strength measurements, we performed four sets
of vertical-only flights. Each set of flights was conducted in a
different geographic region of our measurement area. During
each vertical flight, the UAS was raised by 10ft increments
approximately every 15 seconds to 100ft. It was then raised
in 20ft increments approximately every 15 seconds to 400ft
(the maximum FAA non-exempt altitude limit).

F. Method 6: Stationary Box

Because continuous monitoring in an area can be costly
in terms of equipment and manpower, coverage mapping is
typically completed via sampling over a short time-frame. For
example, in our ground sensing driving campaign, we take
all samples over a maximum of one hour for each unique
location. As part of our study, we seek to verify that this one-
shot sensing method is appropriate for estimating long-term
spectrum availability.

We therefore measure spectrum occupation over time in a
single location to monitor changes. We enclosed a NooElec
RTL-SDR (the same model as is utilized by the ground
measurements and UAS) run by a Raspberry Pi 3 B+ in a
weather-proof case with the stock antenna on top the case,
shown in Figure 1d. Over two days, the RTL continuously
iterated through a pre-programmed list of all 20 known LTE
frequencies for the four network providers in the area and
recorded signal strength readings for each frequency every
three seconds.

This method monitors the stability of the RTL-SDR mea-
surements over time and can indicate the appropriate flight
time necessary to generate a consistent measure of signal
quality in an area. While this data is not generalizable ge-
ographically, it provides insight into the precision of signal
strength reading from an RTL-SDR.

G. LTE Channel Selection by Provider

Before data collection, we compiled a list of LTE cellular
frequencies in use by the top providers in the area. This was
needed for every sensing method other than the UEs, which
pulled the active frequencies automatically for their respective
provider. We compiled this list using two complementary pro-
cesses. First, on each UE we ran CellMapper [13], an Android
application that allowed us to query the active frequencies
detected by the device for the corresponding LTE provider.
We supplemented this list with a scan using a spare Ettus
Research USRP B200, equipped with a wideband LTE dipole

Spectrum
UE UAS Analyzer USRP RTL-SDR

UE 1152 - - - -
UAS 305 812 - - -

Spectrum Analyzer 131 53 1199 - -
USRP 131 53 1199 1199 -

RTL-SDR 131 53 1199 1199 1199

TABLE I: Number of overlapping geographic bins by signal
collection method.

antenna [44], connected to a Lenovo ThinkPad laptop running
srsLTE [45]. Using srsLTE we performed a scan of all possible
LTE frequencies operated in the United States and appended
to our list any frequencies not previously discovered. Since
UEs choose the strongest frequency to communicate with a
nearby base station, this allowed us to locate other frequencies
available from nearby cells which the UEs would not use at
our test sites but could jump to intermittently. As we moved
between regions, we added all newly detected frequencies to
the list scanned by all sensors.

The resulting list contained 22 frequencies in operation in
the area, served by the four providers. Because the NooElec
RTL-SDR is limited to a frequency of 2300 MHz, two of
the detected frequencies (2628.8 MHz and 2648.6 MHz) were
outside the range frequencies we could sense on the Ground
RTL, Stationary Box, or UAS and are dropped from our
analysis.

IV. ANALYSIS

A. Accuracy of Data Collection Methods

1) Preparing data for geographical analysis: Because mul-
tiple devices and personnel participated in data collection, the
data was not sampled at the same exact timestamp or precise
GPS location for all methods. For example, both the ground
sensors and the UAS passed over the same residential area but
may not have covered the same 1 meter GPS coordinate due
to road availability. To accurately compare data collected by
different methods, we first aggregate data into geographical
bins of three decimal places of GPS accuracy, approximately
110 square meters in area. Then, for each method and for
each set of readings on different LTE frequencies, we take the
mean across all the signal strength values that fall into that
geographic bin.

The data collected by the UEs included only the network
provider (AT&T, Sprint, T-Mobile, and Verizon), and not
the frequency on which the UE was operating. To com-
pare this to the other data collection methods, which report
frequency instead of network, we first map each frequency
to the corresponding network provider using the frequency
list we describe in Section III-G. For each network provider
and geographic bin, we then select the frequency with the
strongest signal strength and set that as the signal strength
for the provider in that bin. This method resulted in 2,637
unique 110m2 geographic bins. Not every area was sampled
by every method. The resulting overlap between methods and
geographic area is summarized in Table I.
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Fig. 2: Kernel density estimation of original data by signal
collection method.

2) Transforming Raw Signal Readings: The UEs, spectrum
analyzer, RTL-SDR modules (including both the one mounted
on the UAS and in the stationary monitoring box), and the
USRP all report signal strengths on varying scales. We show
the original distribution of the relative signal strengths for
each collection method in Figure 2. As we can see, while the
distributions have similar normal-like peaks, the offsets and
width of the distributions do not match.

While the spectrum analyzer outputs dBm, the other devices
report relative signal strengths. As we are interested in the
experience of the end user, before comparing data collection
methods, we first need to transform the raw relative signal
strength readings to match the UEs.

To do so, we first perform a min/max normalization on each
method, as shown in Equation 1, where ~O is the original data,
m ∈ {spectrum analyzer, USRP, RTL, UAS} is the method and
~N is the normalized data.

~Nm =
~Om −min( ~Om)

max( ~Om)−min( ~Om)
(1)

Next we offset and scale the other methods to align them
with the signals received by the UE. To do this we randomly
selected 50% of our data as a training set. On this training set
for each method we find an offset xm and scaling factor am to
minimize Equation 2, where nm and nue are measures taken
from the same geographic bin and cellular network provider.
If a method does not have a matching UE measurement, it is
omitted from the sum.

min
xm,am

( ∑
nm∈ ~Nm

[am(nm + xm)− nue]
2

)
(2)

Finally we scale and offset all of our data for every method
other than the UE by xm and am, and scale back to the
readings of the UE as expressed in Equation 3, where ~Tm

is the resulting transformed data for each method.
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Fig. 3: Kernel density estimation of transformed distributions
by signal collection method.

~Tm =
[
am
(
~Nm + xm

)](
max( ~Nue)−min( ~Nue

)
+ min( ~Nue)

(3)

By transforming the data we can now compare signal strength
readings to one another and to the UE. The resulting trans-
formed distributions are shown in Figure 3. For the rest of
our analysis, we use this transformation when we report signal
strength values in dBm.

3) Estimating signal strength: We computed the Pearson
correlation on each method pair and found only a weak
linear relationship between the collection methods and the
readings from the UEs, even after transforming the data. As
signal strength can vary, even between different UE device
makes and models, we categorize the level of signal quality
rather than predicting the exact signal strength a UE would
receive in an area by dividing the signal strength levels into
five groups, based on criteria in Table II. While there is no
standard for defining what LTE signal strength corresponds to
what quality, we model our criteria after those suggested by
SignalBooster [46].

Based on this categorization we compare how each method
sorted the signal strength readings across the geographical
bins, using the UE as ground truth. We summarize our results
in Figure 4. The UAS was most closely aligned with the UE,
matching values exactly for 72% of the geographic bins. When
allowing for one signal quality of discrepancy (for instance,

Signal Quality Range Color

Bad <120 dBm Black
Poor -120 to -111 dBm Red
Fair -111 to -105 dBm Orange

Good -105 to -90 dBm Green
Excellent >90 dBm Blue

TABLE II: Categorization of signal strength into signal
quality bins.
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a method stating a signal was Fair when the UE labeled it as
Poor) all methods had over a 95% accuracy, with the UAS
again leading with a 98% accuracy. A notable result was
that error was skewed towards under-predicting the received
signal strength. Accounting for this bias when estimating UE
reception would improve accuracy further.

B. Longitudinal Analysis

From the stationary radio (introduced in Section III-F) we
received 684,096 readings over a period of two days. To
measure the relative stability of signal strength readings, for
each reading we calculated the deviation from the mean of
the corresponding frequency. To determine the stability across
different time scales, we re-sampled the data over multiple
time scales (1 minute, 1 hour, 1 day), averaged the intermediate
readings, and re-computed the deviation of each sample. The
resulting time-series is shown in Figure 5.

As expected, raw readings (with a sampling frequency of
3 Hz) fluctuated considerably, with a total range of 80dBm
and the majority of fluctuations < 7 dBm from the mean.
When comparing between minutes the majority of the reading
were < 3 dbm from the mean. When comparing hour to hour,
the majority of signals deviate < 1 dBm from the mean.
Comparing between two days of data, across all frequencies,
the majority of signals did not deviate.

We analyzed the distribution of hour to hour signal strengths
across the 20 monitored LTE frequencies, as shown in Fig-
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ure 6. The majority of readings across the two day time span
fell within 1 dBm of each other. The largest change of signal
strengths between two hours was observed on 739.0 MHz
(utilized by AT&T) and 1967.5 MHz (utilized by Verizon)
which exhibited 7dBm changes.

The end user is most impacted by the signal strength of
the frequency chosen by the UE. We also examine the hour
by hour change of network signal strength. For each operator,
for every hour time window, we choose the frequency with
the maximum average signal strength. We present the results
in Figure 7. While there is a slight improvement in signal
strength during night time hours, for each network the total
hour to hour fluctuations in signal strength are minimal.

C. Impact of Altitude

To analyze the impact of sampling altitude on signal
strength we executed multiple vertical flights in four different
locations, as described in Section III-E2. In our analysis, we
keep the four locations separated and look at how signal
strength at each LTE frequency varies with altitude from the
ground. To compare between frequencies, we calculate the
deviation of each signal strength measure from the mean of
that frequency at each location. We then group altitudes into
20 foot bins and examine the distributions of altitudes across
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Fig. 8: Deviation of signal strength from mean.

those bins at each of the four locations. We present the results
in Figure 8.

Our results show that signal strength variation can be quite
dependent on location. The first and third locations, Flat Rural
and Residential respectively, were located level with a wide
area of flat terrain surrounded by low hills. At these locations,
the vertical UAS flight showed an overall increase in signal
strength as altitude increased across LTE frequencies. This
might suggest that in low lying terrain, away from strong
cellular readings, coverage mapping may be sensitive to flight
altitude.

The second location, Urban, was located in a more urban
area with better cellular coverage. In this area, altitude did not
alter the signal strength of frequencies sensed by the UAS.
The fourth location, the Hilltop, was located high on a hill
approximately 400ft above the Residential location. At this
location, altitudes over 160ft showed a drop in signal strength
across most of the monitored LTE frequencies. One possible
explanation is that the aerial vehicle may have difficulty
detecting coverage at altitudes significantly higher than the
provisioned coverage area.

In addition to examining frequency fluctuations, we examine
the received signal strength by cellular network provider. In
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Fig. 9: Signal strength change by altitude and network.

Figure 9 we show the mean change in signal strength across
all frequencies with altitude for each network and location.
The change is signal is network dependant, and moreover the
difference between networks depends on location. A probable
explanation for the observed difference is that the eNodeBs
serving these networks are in disparate geographic locations,
with different signal propagation patterns.

V. DISCUSSION

While we observe clear relationships between sensing meth-
ods, the relative signal strength values output by the devices
are weakly linearly correlated, particularly to the UEs, even
after transforming the data to a common reference frame. We
believe the problem stems from difficulty in aligning the var-
ious methodologies for comparison. Because we were unable
to capture the frequencies on which the UEs operated, we
compared the frequencies with the highest signal strength for a
given method. This may not always match the actual frequency
used by the UE. Additionally, the wardriving readings from
the RTL-SDR, USRP, and SA are more difficult to collect due
to the labor involved. As a result, there are fewer points of
geographic overlap than for the UE and UAS measurements.
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By categorizing individual signal strengths by quality, mir-
roring the “bars” of signal strength that a user’s device might
report, we were able to accurately match these categorical
measurements across measurement methods. As the most
versatile collection method, the UAS predicted quality within
one gradation over 98% of the time. This aerial signal sensing
method demonstrates promise as an effective system for wide-
scale cellular coverage mapping.

Based on our experimental data, we generated a coverage
map for each method and provider. Figure 10 shows a portion
of the map for Verizon. The readings from the UE are shown
in Figure 10a and those taken from the UAS on the same
day are shown in Figure 10b. Colors and values correspond
to Table II, with high RSRP in green and low in red.

(a) Map from UE readings. (b) Map from UAS readings.

Fig. 10: Cellular coverage map generation.

Next, we evaluated how the design of our aerial data
collection impacted the accuracy and precision of UAS signal
quality assessment. We considered: 1) how a sample taken at
a particular time compares to the overall LTE channel quality
during a 24 hour period; and 2) how different UAS altitudes
impact this characterization.

Sensing over Time:
Consider the longitudinal analysis of the stationary sensing

equipment from Section IV-B. For most frequencies, a single
flight is sufficient; most readings fell within 3 dBm of each
other. However, certain frequencies may be less stable. For
example, we found that two channels within the two-day
deployment showed values varying by up to 7 dBm, which
is wide enough to bump a reading by two signal quality levels
(e.g. Good to Fair, or even Poor).

As observed in Figure 6, RTL-SDR signal strength mea-
surements fluctuate between readings. The average of multiple
readings provides a more stable description of signal quality
in a geographic region. Because the UAS would need to take
dozens of samples from a geographic region, the flight pattern
and maximum flight speed would vary with the desired gran-
ularity of the measurements. The UAS must fly at low speeds
to achieve high granularity (e.g. building level accuracy) and
higher speeds to achieve greater coverage but lower granularity
(e.g. neighborhood level). Alternatively, the UAS can fly at
higher speeds following a flight plan that conducts repeated
measurements at the same location (e.g. through flight loops).

RF signals sometimes fluctuate based on moisture and other
weather conditions. In this study, we did not capture the sen-
sitivity of RTL-SDR signal strength measurements to weather
fluctuations and seasonal changes. The stationary sensing
equipment was deployed during clear days with no rain, a daily
temperature high of ≈ 72°F and a low of ≈ 52°F . In future
work, it would be informative to examine how signal readings
from an RTL-SDR vary over the course of much longer time
spans. Such an assessment could reveal whether the RTL-
SDR equipped UAS requires calibration depending on current
weather. This type of study would also help with understanding
how cellular network quality measurements from our system
may fluctuate during or after a natural disaster.

Choice of Altitude:
To measure how altitude affects signal quality, we look to

the analysis in Section IV-C. The interaction between altitude
and signal strength reception by the UAS is complex. The
local geographic topography seems to be the dominant factor
in received signal strength. When flying in low valleys, an
increase in altitude corresponded to an increase in mean
received signal strength. Yet, when ascending from a hilltop
above the residential area, signal strength declined. Because
the orientation of cellular tower antennas by network providers
is provisioned to optimize coverage at elevations of residences
and businesses [24], aerial collection at altitudes (in our
case approximately five hundred feet above the residential
elevation) may see degradation in signal strength.

The effect of altitude on signal quality has implications for
evaluating LTE coverage and availability for the occupants
of high rise buildings. In dense city centers, we could use
aerial systems to map signal strength in three dimensions.
Such a measure of signal quality across floors in skyscrapers
would not be accounted for by conventional measurement
methodologies.

VI. CONCLUSION

We have shown that a UAS-mounted RTL-SDR is capable
of providing a granular reflection of LTE signal strength.
Our low-cost solution enables accurate coverage mapping and
quality assessment in regions typically neglected by other
forms of assessment. Moreover, our system achieves this
without requiring expensive specialized equipment, extensive
time commitments, or significant manpower. We hope that
our work will pave the way for future solutions that more
accurately represent cellular coverage, particularly in those
regions that are likely under-served.
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