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Abstract. 5G networks have been broadly touted as a revolution in
cellular performance. However, these networks have significant architec-
tural, spectrum and physical layer options, such that the delivered per-
formance can be variable. The disparity in smartphone hardware and
software platforms adds another layer of performance uncertainty. Our
goal in this work is to characterize the impact of these features on 5G
performance. To do so, we analyze a dataset of nearly 1.75 million crowd-
sourced Ookla® Speedtest Intelligence® cellular network measurements
over three years and eight U.S. cities. We employ a novel approach by
grouping Speedtest results based on both performance metrics and their
deviation, while also accounting for spatial distribution and frequency
band characteristics. By using statistical distance measures, we quantify
the impact of multiple PHY layer and device-specific features across these
multidimensional groups. We complement our in-the-wild analysis with
a controlled study to validate our findings. We observe that PHY layer
parameters, such as channel quality index and signal strength are the
primary drivers of performance variability within each frequency range.
However, between frequency ranges, user equipment hardware emerges
as the dominant factor, highlighting that the equipments themselves play
a critical role in determining whether users can fully utilize 5G capabil-
ities. This underscores the importance of advancing device hardware to
keep pace with the rapid evolution of network technologies.

1 Introduction
5G technology has promised be a connectivity panacea, a dense grid of intelligent
wireless devices that deliver “multi-Gbps peak rates, ultra-low latency, massive
capacity, and more uniform user experience” [52]. The last four years have seen
an explosion of 5G network deployment across the U.S. and worldwide [4, 5, 14].
Consistent with other advanced wireless technologies, there exists a plethora of
5G architectural and physical (PHY) layer options. There is also a wide range of
5G-capable devices and chipsets, from “5G-ready” cell phones developed in the
late 2010s, to modern devices that support advanced 5G features like mmWave
technology and carrier aggregation for enhanced connectivity [9, 12].

This array of deployment and usage options brings into question whether
all configurations receive the multi-Gbps, high-performance experience touted
by marketing campaigns. Prior work has noted wide variability in 5G perfor-
mance [40, 49, 60]. We build on these findings to contextualize 5G network
performance based on PHY layer and device features and quantify the impact of
these features on measured performance. Specifically, we ask the question: how
variable is 5G performance, and which specific network and device features have
the most significant impact on measured performance?



To answer this question, we utilize a novel dataset of 1.75M individual
crowdsourced Ookla® Speedtest® measurements from eight U.S. cities across
three years. Although past work has shown that crowdsourced speed measure-
ments may contain biases due to their uncontrolled collection [27, 33, 51], they
nevertheless are a critical, rich source of “in-the-wild” network performance
data [44, 50, 53, 55]. Hence, we analyze the features in this dataset and apply
statistical measures to quantify their impact on 5G performance. However, be-
cause of potential biases in the crowdsourced data, we supplement this dataset
through experimentation and generate an additional 3.7k Speedtest measure-
ments on three commonly-used cellular device types and cellular carriers. We
confirm our analytical findings in this more controlled setting.

We begin by analyzing three years, from 2021 to 2023, of 5G crowdsourced
performance trends from three independent carriers. We find wide divergence
in measured download speeds, both for individual carriers and between carriers.
Notably, the bottom 30% of 5G tests perform worse than the top 25% of 4G tests,
even in 2023. Motivated by this wide variability and poor performance, we em-
ploy statistical distance measures to quantify the impact of the PHY layer, device
and other features on 5G download speed and latency. For each carrier in our
study, we first group tests based on frequency to account for differences in wave
propagation characteristics. Within each frequency range, we further categorize
tests by H3 resolution 9 hexagons [22]1 to control for location-specific param-
eters. We then analyze each group based on both average performance (speed
and latency) and variability. Our novel methodological contribution is in apply-
ing Kullback-Leibler divergence to quantify the divergence between performance
distributions, allowing us to systematically identify the features that most sig-
nificantly impact 5G variability. By computing the statistical distance between
the consistently high-performing group and each of the other groups, we identify
key features that have the most significant impact on 5G performance variabil-
ity. This approach allows us to identify features that affect 5G performance
both within each frequency range and across the different frequency ranges. We
find that within each frequency range, cell density and PHY layer parameters,
such as channel quality index (CQI), signal strength (RSRP) and signal quality
(RSRQ), unsurprisingly, are the primary contributors to performance variability.
However, across frequency bands, user equipment, specifically the chipset mod-
els and software, show high divergence values for all carriers in our study. Our
results demonstrate that 5G deployment alone does not guarantee high perfor-
mance. Rather, careful attention to PHY configurations, modern devices, and
sufficient cell tower densities are needed to reap the benefits that 5G promises.

2 Data and experiment setup
To quantify 5G performance variability and identify key influencing factors, we
analyze multiple complementary datasets. In the following section, we describe
each of our data sources, including crowdsourced and controlled measurements,
along with our methodologies. We also discuss the limitations of our approach.

1 An H3 geospatial index has an average area of 0.73 km2 [24].



Speedtest Intelligence Data. The Ookla® Speedtest® platform offers users
the ability to measure Internet connection quality through either a web-based
portal or a dedicated mobile application [18] using a network of over 16k mea-
surement servers world-wide [11]. Over the past decade, Speedtest has garnered
extensive usage among both consumers and policymakers [1, 3, 10]. For each
Speedtest, a geographically close test server with the lowest latency is automat-
ically selected [16] and TCP connections are used to saturate the link between
the client and the test server to measure network speed and latency. We utilize
the Speedtest Intelligence dataset with crowdsourced measurements collected be-
tween January 1, 2021 and December 31, 2023, which we obtained through a Data
Use Agreement2 (DUA). In contrast to the publicly available aggregated Ookla
data, the DUA dataset contains additional Speedtest data points, each with
multiple features, such as upload/download throughput, latency, cellular carrier,
user equipment (UE) and software details, chipset, and other relevant geospa-
tial information. Because our study analyzes cellular network performance, we
focus on cellular Speedtest measurements from iOS and Android smartphone
applications. Tests report additional metadata, including PHY metrics (RSRP,
signal-to-noise ratio (SNR), RSRQ, CQI); type of cellular radio frequency (RF)
technology (2G, 3G, 4G LTE, 5G NR); RF band frequency; channel width; and
available kernel memory(for Android measurements) and 5G deployment mode
(non-standalone (NSA) 5G vs standalone (SA) 5G) for iOS measurements. Our
dataset contains a total of 1.75 million measurements (700k 4G and 1.04M 5G
measurements) collected from eight U.S. cities from three major U.S. cellular
carriers. For interested readers, we enumerate the number of data points per
city and carrier in Table 2 of the Appendix. Each of the cities has a population
between 400k and 700k and covers an area of 90 – 350 sq. miles.
Tower Maps data. We utilize Tower Maps [20], a proprietary dataset of cell
tower locations in the U.S. that includes details such as accurate location infor-
mation, tower height, and construction date, to augment our analysis. While the
data does not specify the radio type for each tower, it allows us to estimate the
density of cellular infrastructure around Speedtest takers. By integrating this
information with our data, we can analyze how the presence and concentration
of nearby towers correlates with measured 5G performance, offering insight into
the relationship between infrastructure density and user experience.
Controlled experiments. To verify our results from the crowdsourced dataset,
we conduct controlled Speedtest measurements for 15 days in April 2024, a du-
ration that captures both hourly and weekly usage patterns while controlling
for device and location variables. We use three popular Android phone models,
which were also common models in our crowdsourced dataset: Samsung Galaxy
S20+ and S23, and Google Pixel 7, each with a different chipset. We utilize three
phones of each model, for a total of nine experiment phones. For consistency,
we purchase nine SIM cards with identical cell plans for each of the same three
cellular carriers analyzed in the crowdsourced data. We conduct Speedtests at

2 Due to our data use agreement, we are unable to disclose carrier names, specific
locations, or chipset details.



regular intervals using nine SIM cards per carrier; Speedtests are run sequentially
on each phone, and the cell carrier is rotated after each test set. We conduct
our experiments in eight locations identified to have 5G coverage, as indicated
by the National Broadband Map [17] and the carrier official websites. In many
cases, multiple test sets are conducted per location, per carrier. To analyze PHY
layer and cell tower information, we utilize Accuver XCAL-M [21], a professional
tool that can extract information from the Qualcomm diag [2]. Since the Google
Pixel 7 chipset is not compatible with XCAL-M, we run open source Android ap-
plications CellMapper and NetMonster [7, 15] on these phones during Speedtest
measurements to obtain the same granular information.
Limitations. Prior research [27, 33, 51] has recognized potential shortcomings
of crowdsourced network performance metrics. Crowdsourced tests are uncon-
trolled and hence can introduce biases related to the test-taker, geographic lo-
cation, network conditions (congestion or poor service), device type and charac-
teristics, and the lack of cellular data plan details (e.g., speed caps or throttling
limits). Additionally, our dataset lacks information on features such as beam
management strategies and resource blocks available, which can impact mea-
sured performance. However, our objective is to study 5G network performance
as measured by Ookla Speedtest; to identify the network and device features that
contribute to 5G performance variability; and to quantify the impact of these
features on measured performance. We believe the impact of inherent dataset bi-
ases on our analysis is limited. Nevertheless, we confirm all findings derived from
the crowdsourced data with the data generated by our controlled experiments.
3 Dissecting 5G performance
We begin with a longitudinal analysis of 4G and 5G to characterize their evolv-
ing usage and performance in our time window, during which 5G deployment
increased significantly [13, 19]. While the focus of our study is 5G, we include
some initial data on 4G to contextualize the transition period from 4G to 5G.
Then, we dig deeper and analyse the key factors that affect in-the-wild 5G per-
formance and quantify the variability using statistical distance measures. We
validate our results through controlled experiments. While we also analyze up-
load speed, we focus our presented analysis on download speed and latency.
Download speed is often a key determinant of user experience [8] and the vari-
ability in download speeds is much greater than that of upload speeds. Latency
also plays a crucial role, particularly for interactive applications and overall re-
sponsiveness. We confirm that the trends represented by download speeds are
consistent with those in upload speeds.
3.1 Longitudinal Trends
We begin by characterizing Speedtest usage and measured performance over
time to study changes that correlate with growing 5G deployment. Figure 1(a)
illustrates these temporal trends, aggregated monthly over the three cellular
carriers and eight cities. It indicates a general upward trajectory in the number
of 5G Speedtests, while 4G Speedtests decrease by 61% during the same period.

Corresponding with the 5G test-taking trend is an increase in median 5G
download speed, more than doubling over the three year period, as shown in
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Fig. 1. Longitudinal evolution of test taking and measured download speeds.

Figure 1(b), which illustrates the range of measured download speeds annually
for each cellular technology. Unlike 5G, 4G speed remains stable. A similar trend
is observed in 5G latency, shown in Figure 1(c), with the median value decreas-
ing by about 10ms from 2021 to 2023. These trends are a likely indication of
increasingly widespread 5G deployment and availability, coupled with an in-
crease in 5G-capable UEs and a movement away from 4G. Interesting, however,
is the wide range in 5G download speed performance, which grows annually: in
2021, the difference between the 25th and 75th percentiles was 245Mbps, while
in 2023 it was nearly 400Mbps. This wide, and growing, range of speeds is our
first indication of the wide variability in 5G performance. Further, Figure 1(b)
indicates some overlap in 4G and 5G performance, even as late as 2023. When
we take a closer look, we find that, even in 2023, the bottom 30% of 5G down-
load speeds are worse than the top 25% of 4G tests (Figure 1(d)). Given this
highly variable 5G performance, we ask: what key network and device features
most significantly impact 5G performance? As described earlier, the range of 5G
network features, PHY layer options, and devices is wide. Our goal is to discover
which of these features contribute most substantially to measured performance.

We conclude our longitudinal analysis by examining the 5G download speed
and latency of each carrier individually in Figures 1(e) and 1(f), respectively.
We observe a growth of over 200% in the 75th percentile download speeds for
carriers 1 and 2. While the latency of carrier 2 does not show huge improvements,
carrier 1 exhibits a 50% decline in median latency. On the other hand, carrier 3’s
performance decreases significantly after 2021. While this is interesting, it is
orthogonal to our analysis. We include a deeper exploration of this anomaly in
the Appendix for interested readers.

3.2 Feature Analysis
In this section, we analyze measured Speedtest download speed and latency,
disaggregating by test metadata to quantify performance differentials due to each



0 1000 2000 3000 4000
Download speed (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 te

st
s

< 1 GHz
1 - 3 GHz
> 6 GHz (mmWave)

(a) Frequency range

1 year 2 years 3 years 4 years 5+ years
Chipset age

0

250

500

750

1000

1250

Do
wn

lo
ad

 sp
ee

d 
(M

bp
s)

(b) Chipset age

0 10 20 30 40
Cellular deployment density (resolution 9)

150

200

250

300

M
ed

ia
n 

do
wn

lo
ad

 sp
ee

d 
(M

bp
s)

(c) Cell tower density

Fig. 2. Effect of key features in our dataset on measured downloads speeds.

feature. The test metadata we primarily focus on includes 5G RF technology, 5G
PHY parameters such as RSRP, RSRQ and CQI3; UE features, such as device
model and chipset; and cell tower density. For each feature category, we use
the Speedtest datapoints that have the corresponding metadata. For brevity, we
present only the findings for download speed here; we confirm our findings are
consistent for latency.
Radio frequency (RF) technology. 5G networks operate in a variety of fre-
quency ranges: low-band (<1 GHz), mid-band (1-6 GHz), and mmWave (> 6
GHz). The characteristics of wave propagation in these bands naturally lend
themselves to widely varying performance. To study the impact of these RF fea-
tures, we utilize the 100k 5G tests from Android devices that contain frequency
information. We have included details of the count of Speedtests across frequency
bands for each year in Tables 3 and 4 of the Appendix. Figure 2(a) illustrates
the significant impact radio frequency has on performance: mmWave 5G achieves
median download speeds of over 1200 Mbps, a 1400% increase from the medians
of sub-6 GHz speeds. On the other hand, there is minimal difference between
low-band and mid-band 5G. Finally, our dataset lacked labelled measurements
for NSA and SA 5G deployment modes in Android measurements. Hence, our
analysis does not include these specific architectural configurations.
Device hardware. Next, we analyze the distribution of 5G download speed
by chipset age4 in Figure 2(b). We observe that the median value improves
significantly with newer chipsets, with the latest models achieving speeds twice
as fast as those of chipsets that are 5 years old.
Cell tower density. 726k Speedtest measurements have GPS-level location in-
formation in our dataset. We use this subset to study the relationship between
cellular deployment density and measured download speeds, presented in Fig-
ure 2(c). We utilize cell tower data obtained from Tower Maps and compute
the number of cell towers within the H3 resolution 9 hexagon of each Speedtest
measurement; we call this cell tower density. We find that cell tower density and
median download speeds have a moderate correlation (0.38). While this suggests

3 RSRP is the average power received from a 5G reference signal. RSRQ indicates how
clearly the signal can be heard over interference. CQI is a mechanism by which the
UE informs the base station about channel quality.

4 We define chipset age as the number of years since a chipset was introduced.
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Fig. 3. Effect of frequency on measured network performance metrics.

a positive relationship, other important factors that could impact speeds, like
cellular load, are not available in our metadata, limiting further analysis.

3.3 Quantifying 5G Variability In-The-Wild

Our analysis reveals significant variability of in-the-wild 5G performance. Based
on this trend, our goal in this section is to analyze this variability by estimating
the impact of each feature on the measured download speed and latency to
better characterize the factors that influence 5G performance. To do so, we use
a subset of 370k Android measurements labelled with both PHY layer and device
chipset information. Additionally, we compute cell tower density at the location
of these measurements. While machine learning approaches can be valuable in
analyzing large datasets such as ours, any biases in the crowdsourced Speedtest
data, as well as the limited information about signal propagation and antenna
beamforming characteristics, pose challenges for these methods in this context.
Hence, we instead apply a statistical approach that quantifies the (dis)similarity
between two distributions. This method allows us to directly compare features
across performance groups and identify the ones that differ most between them.
Statistical distance. Statistical distance quantifies the distance between two
statistical objects, such as two probability distributions or samples [28], and
is typically used in machine learning for anomaly detection, classification, and
model evaluation [31, 34, 57, 59]. We apply Kullback-Leibler (KL) divergence to
this new context; KL divergence quantifies the dissimilarity between two proba-
bility distributions, ranges from 0 (identical) to infinity (highly dissimilar), and
can be applied to both categorical and continuous features. We describe KL
divergence in more detail in the Appendix. To apply the divergence model, we
need more than one distribution for comparison. We utilize two key observa-
tions from our preliminary analysis. First, different carriers adopt distinct de-
ployment strategies, leading to significant performance variations. Second, 5G
operates across different frequency ranges, each with its own signal propagation
characteristics, which directly influences performance; we show in Figure 3 the
impact of frequency bands on network performance metrics for each carrier in
our study. Based on these observations, we employ a novel methodology to group
the crowdsourced dataset in a way that isolates specific test variables and con-
trols for inherent data variations. Figure 4 gives an overview of our methodology,
which we describe in detail next.



Fig. 4. Classification of tests for distance calculation.

Group < 1 GHz (1) 1-6 GHz (2) > 6 GHz (3)
High Performance – Low Variability (A) A1 A2 A3
High Performance – High Variability (B) B1 B2 B3
Low Performance – High Variability (C) C1 C2 C3
Low Performance – Low Variability (D) D1 D2 D3

Table 1. Feature descriptions for network performance analysis.

Methodology. We begin by disaggregating the Speedtests by cellular carriers to
account for differences in their deployment strategies. We then group the tests by
frequency range. This allows us to isolate the effect of frequency while controlling
for carrier-specific variations. In this analysis, we include only the 100k Speedtest
measurements that are labelled with frequency range information. Within each
frequency range, we group the tests by H3 resolution 9 hexagons. This spatial
grouping serves two key purposes: it allows us to control for location-specific
factors, and it aligns with the FCC’s method of computing mobile broadband
coverage in the U.S. [17]. To assess whether neighboring H3 hexagons exhibit
similar 5G performance and thereby validate the relevance of this grouping, we
leverage the Moran’s I [23] statistic.5 Our analysis reveals that all three carriers
show a positive spatial autocorrelation across all eight cities for both download
speed and latency. We present the average Moran’s I statistic across all eight
cities in Table 5 of the Appendix. This justifies our use of H3-based spatial
grouping to control for location-specific factors.

For each H3 hexagon, we compute the average and standard deviation of 5G
download speed and latency to assess performance and its variability by carrier
and frequency range. Using the distribution of means and standard deviations,
we define the performance and variance thresholds, listed on the right side of
Figure 4. This results in four categories (A-D) per frequency range (1-3) and
per carrier, as outlined in Table 1. Our approach allows us to isolate the effect
of frequency while examining the performance variation within each frequency
range. We then compute the divergence between these groups to quantify the
impact of features on 5G performance both within and between frequency ranges.

To analyze performance within each frequency range, we designate its respec-
tive “High Performance – Low Variability” group as the reference group; these

5 Moran’s I statistic has been widely used in past research [32, 41, 64] to analyze the
spatial distribution of a variable of interest within a specific geographic area. It is
described in more detail in the Appendix.
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Fig. 5. KL divergence metrics - download speed.
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Fig. 6. KL divergence metrics - latency.

are groups A1, A2, A3, as labeled in the table. This allows us to identify which
features diverge from optimal features within each frequency range. To analyze
performance differences between frequency ranges, we also need an overall refer-
ence point. For this, we select the “High Performance – Low Variability” group
in the highest frequency range (mmWave) as our overall reference group (Group
A3). This enables us to identify the features that diverge when comparing op-
timal performance at lower frequencies to the theoretical best-case scenario of
5G technology. By using these reference groups, we can systematically analyze
performance variations both within and across frequency ranges, revealing fac-
tors that influence 5G network performance. For every other group, we calculate
the pairwise KL divergence for each individual feature between that group and
the reference group. We include a variety of PHY layer, performance, device,
time and cell tower density features; we list each feature we study in Table 6 in
the Appendix. We perform Laplace smoothing [6] for any zero probability event
we encounter in our reference distribution. These distance measures allow us to
quantify, for each group, the dissimilarity between the distributions of individual
features between itself and the reference group.
Results. We show detailed results for KL divergence from our statistical dis-
tance computation for download speed and latency in Figures 5 and 6, respec-
tively. Our analysis reveals consistent patterns across all carriers, despite their
different deployment strategies. Within each frequency range, PHY layer param-
eters, such as CQI (Row 1 on the y-axis), show the highest divergence, confirming
that difference in signal quality leads to difference in network performance, as one
would expect. As frequency increases, cell tower density becomes increasingly in-
fluential, likely due to shorter wavelengths and therefore smaller coverage areas.
For inter-frequency comparisons (e.g. A1 and A2 on the x-axis), while PHY layer
parameters remain important, device-related factors, particularly hardware fea-
tures such as chipset model and age, and software features such as Android API,
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Fig. 7. Download speeds by frequency and device model (each with a different chipset).

demonstrate significant divergence for all carriers. For instance, chipset model
has a KL divergence of approximately 3, 1 and 2 for carriers 1, 2 and 3, respec-
tively. This suggests that device capabilities play a crucial role in determining
5G performance across different frequency bands. Finally, we note that time of
day shows low divergence, implying minimal impact on performance variability.
3.4 Experimental Validation

Our analysis in Section 3.3 yielded multiple findings about key features that
affect 5G performance as measured by crowdsourced Speedtests. In this section,
we confirm these findings in a controlled environment through the use of ad-
ditional experiments, described in Section 2. Specifically, we analyze 3,750 5G
Speedtest measurements that we collect over 15 days on nine phones. Each phone
model supports the full range of frequency bands available in our measurement
locations [17]. Figure 7(a) illustrates the download speeds by phone model. The
Samsung S23 and Google Pixel 7 models perform well, with median download
speeds reaching approximately 600 Mbps; tests on the Samsung S20+, an older
phone, measure lower download speeds, with a median of 400 Mbps. On the other
hand, measured latency (not shown) on all phone models is nearly identical. In
the remaining analysis, we use only 5G tests from carriers 1 and 2; carrier 3,
despite claims of 5G service, never connected to a 5G cell in our test locations.
We leave deeper exploration of this occurrence for future work.
Measuring variability. Our goal is to ensure the findings from our crowd-
sourced data analysis are replicable in a controlled setup where data biases
are minimized. To this end, we perform a detailed analysis of our controlled
Speedtest measurements disaggregated by UE model, frequency band, and car-
rier. For carrier 1, measurements in the same frequency range yield similar me-
dian download speeds for the S23 and the Pixel 7 models (650 Mbps), while the
S20+ shows slightly lower speeds (450 Mbps), as shown in Figure 7(b). How-
ever, for carrier 2 (Figure 7(c)), the Samsung S20+ phones consistently connect
to cells operating in lower frequency bands, while the Samsung S23 and Google
Pixel 7 phones connect to cells in higher frequency bands, even when running
tests from the same physical location as the S20+. This suggests that while older
device chipsets support higher frequency bands, newer chipsets are likely opti-
mized to utilize these higher bands. This could explain why these newer models
tend to connect to cells operating in higher frequency bands, and highlights the
importance of chipset optimization for utilizing higher frequency bands effec-



tively. We confim that our findings for latency are similar, and present them in
Figure 8 of the Appendix, for completeness.

4 Related Work
Prior work has utilized speed test data to study broadband performance [44,
50, 53, 55, 56] and characterize the utility and usability of the speed tests
themselves [27, 29, 54]. Other work has studied the nuances of speed test de-
sign, showing how different measurement strategies contribute to varying re-
sults [25, 33, 37, 42, 43, 51, 65]. In [42, 51], the authors highlight the importance
of including metadata to improve the accuracy of performance conclusions.

In the context of mobile broadband, the authors of [26] highlight the chal-
lenges in measuring performance. Mobile access bandwidth for over 3.5 million
users is analyzed in [61], highlighting the interdependence of different cellular
technologies. The influence of device and PHY layer parameters on cellular per-
formance was investigated in [30, 58]. Finally, a variety of measurement studies
have focused on the identification of features that affect 5G speeds, latency, ap-
plication quality of experience and power consumption, both in localized settings
as well as in-the-wild through drive tests; 5G speeds are predicted using these
features as well [35, 36, 38, 39, 45–49, 62, 63]. Recently, the authors of [40] con-
ducted an in-depth analysis of 5G performance across three U.S. operators in
two cities, revealing under-utilization of 5G’s capabilities.

In comparison to similar studies, our research uses fine-grained, individual
crowdsourced Speedtest measurements, complemented by controlled experiment
data, to comprehensively assess the impact of diverse factors on cellular network
performance and identify key factors that explain 5G performance variability.

5 Conclusion
Our analysis of 5G network performance variability using statistical divergence
measures reveals that PHY layer parameters, particularly CQI and RSRP, show
higher divergence within frequency bands, especially in mmWave frequencies.
This pattern aligns with known RF signal propagation characteristics, where
higher frequencies have shorter coverage ranges and are more sensitive to envi-
ronmental factors. Across frequency bands, device hardware, notably chipsets,
exhibit significant divergence, highlighting the need for advancements in device
hardware to support the rapid evolution of network technologies. We observe
that crowdsourced data with comprehensive metadata can effectively capture
these nuanced performance variations, underscoring the need for speed test plat-
forms to include such data to facilitate more accurate interpretation of mobile
broadband performance. Such comprehensive data will support more informed
decision-making by regulatory bodies and network operators in planning 5G
infrastructure investments and also addressing potential disparities in user ex-
perience across different devices and locations.
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6 Appendix – Supplemental Material
Table 2. Summary of Speedtest measurements from Ookla (City 1-8) and our own
experiments. Carrier 1, 2 and 3 data are for 5G.

City Total 4G Total 5G Carrier 1 Carrier 2 Carrier 3

City 1 147,443 191,274 80,464 40,994 69,816
City 2 116,738 154,498 76,960 21,468 56,070
City 3 96,904 180,672 101,727 31,737 47,208
City 4 110,766 147,512 94,496 28,451 24,565
City 5 71,530 90,759 60,765 2,108 27,886
City 6 56,321 107,078 33,932 31,701 41,445
City 7 52,233 80,362 37,390 17,552 25,420
City 8 47,555 86,572 33,950 24,037 28,585
Experiment 3,746 1,639 1,780 327

Total 699,490 1,042,473 521,323 198,828 322,322

Table 3. Annual Speedtest counts by
frequency range.

Year ≤6GHz >6GHz (mmWave)
2021 58,908 12,404
2022 76,662 11,844
2023 57,771 4,639

Table 4. Annual Speedtest counts by
frequency range for the data analyzed.

Year <1 GHz 1-6 GHz >6 GHz (mmWave)
2021 20,125 14,054 12,020
2022 7,531 7,163 11,160
2023 6,637 10,457 4,565

Table 5. Moran’s I statistic by carrier and frequency band.

Carrier Frequency Download Latency
Moran’s I p-value Moran’s I p-value

Carrier 1
< 1 GHz 0.326237 0.001 0.063199 0.002
1-6 GHz 0.251701 0.001 0.111560 0.001
> 6 GHz (mmWave) 0.398084 0.001 0.320770 0.001

Carrier 2
< 1 GHz 0.344306 0.001 0.108204 0.005
1-6 GHz 0.352893 0.001 0.134938 0.018
> 6 GHz (mmWave) 0.580837 0.001 0.288536 0.002

Carrier 3
< 1 GHz 0.329644 0.001 0.299311 0.001
1-6 GHz 0.215944 0.001 0.282385 0.001
> 6 GHz (mmWave) 0.391790 0.001 0.505062 0.001

Ethics Statement. Our study does not include human subjects research.
Ookla’s data sharing under the DUA is fully anonymized and does not reveal
full IP addresses, safeguarding the identities of individual users. Moreover, for
the subset of measurements with GPS geolocation, Ookla only shares truncated
coordinates, ensuring they cannot be associated with any user or residence.
Kullback-Leibler divergence. Kullback-Leibler (KL) divergence is a measure
of how one probability distribution diverges from a second, expected probability
distribution. The KL divergence can take on values in the range of [0,∞). A KL
divergence of 0 indicates that the two distributions are identical. As the diver-
gence increases, it signifies that the two distributions are increasingly dissimilar.
It is important to note that KL divergence is not symmetric, and for distribu-
tions which do not have the same support, KL divergence is not bounded. The
KL divergence between two discrete probability distributions P and Q in the
same sample space, X , is given by:

KL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(1)



Table 6. Feature descriptions for network performance analysis.

Feature Description
Download speed Rate of data transfer from server to client in Mbps
Upload speed Rate of data transfer from client to server in Mbps
Latency Time delay in network communication
Frequency range Spectrum band used for transmission
Signal strength (SS-RSRP) Measured power of 5G reference signals
Signal quality (SS-RSRQ) Quality of 5G reference signals
Signal strength (RSRP) Measured power of 4G reference signals
Signal quality (RSRQ) Quality of 4G reference signals
Signal-to-noise ratio (SS-SINR) Ratio of signal power to noise power for 5G
Channel quality Index (CQI) Indicator of downlink channel quality
Channel width Width of frequency band for data transmission
Carrier aggregation Use of multiple carriers to increase performance
Device chipset Processor type in the mobile device
Device RAM Memory storage of the device
Chipset age Age of chipset
Android API version Level of Android operating system
Hour of day Time of measurement (0-23)
Cell tower density (resolution 9) Cell tower density at resolution 9 H3 hexagons
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Fig. 8. Impact of frequency band and device chipset on latency.

Moran’s I Statistic. Moran’s I statistic is a measure of spatial autocorrelation
that quantifies the degree to which similar values of a variable are clustered in
a geographical area. This statistic is commonly employed to assess the spatial
distribution of variables. A positive Moran’s I value indicates that similar values
tend to be located near one another, while a negative value implies that dissimilar
values are found close together. A value of zero signifies no spatial association.
Analysis of carrier 3’s performance drop. As noted in Figure 1(e), car-
rier 3’s performance actually decreases significantly after 2021. To analyze this
trend more carefully, we examine the longitudinal performance of the three car-
riers for illustrative cities in Figure 9. We find that performance for carrier 3 was
much better in 2021 than in subsequent years in some cities (e.g. city 2), while
in other cities (e.g. cities 1 and 3) it generally improves over time. This differs
from the performance of carriers 1 and 2, which show either general upward
trends or fairly stable performance. More analysis on carrier 3 tests shows that
the majority of tests in 2021 are labelled as mmWave, while in 2022 and 2023
combined, only 1.3k of 71k tests are labelled mmWave. We hypothesize that this
could be because of major mmWave deployments in 2021, followed by increased
sub 6 GHz 5G deployments in subsequent years by carrier 3 that offer a better
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Fig. 9. Longitudinal performance of all three carriers in selected representative cities.

coverage radius than mmWave; however, with the available data we are unable
to validate our hypothesis.
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