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ABSTRACT

The ubiquity of sensors has introduced a variety of new opportu-
nities for data collection. In this paper, we attempt to answer the
question: Given M workers in a spatial environment and N probing
resources, where N < M, which N workers should be queried to
answer a specific question? To solve this research question, we pro-
pose two querying algorithms: one that exploits worker feedback
(DispNN) and one that does not rely on worker feedback (DispMax).
We evaluate DispNN and DispMax algorithms on two different event
distributions: clustered and complete spatial randomness. We then
apply the algorithms to a dataset of actual street harassment events
provided by Hollaback. The proposed algorithms outperform a ran-
dom selection approach by up to 30%, a random selection approach
with feedback by up to 35%, a greedy heuristic by up to 5x times,
and cover up to a median of 96% of the incidents.

1 INTRODUCTION

The ubiquity of mobile phones and sensors has brought participa-
tory sensing into daily life. Participatory sensing can be defined as
“the process whereby individuals and communities use ever-more-
capable mobile phones and cloud services to collect and analyze
systematic data for use in discovery” [5]. In this scenario, data can
be continuously collected by leveraging user mobility and phone
sensors across a range of applications including mobile sensor net-
works [8], transportation and traffic monitoring [3], environmental
sensors [14] and street safety [13].

Spatial crowdsourcing (SC) [9] provides a framework for the
previously mentioned data collection applications where data re-
questers can create tasks in geographic areas of interest and workers
are assigned or voluntarily choose to complete these tasks based on
their spatial location. To fulfill an optimization function, such as
minimizing distance traveled by workers [18], ensuring data qual-
ity [2], or maximizing task assignment [9], the task requester must
accurately geolocate the location of task execution by providing
geographic coordinates in the request to the SC server. But what
happens when the requester is interested in sensing a geographic
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region, instead of a specific location, because the location of one or
more events of interest is not precisely known? One solution would
be to use the SC framework by modifying the request sent to the SC
server to include a geographic region instead of the precise location.
The SC server would then query all workers in this geographic area
about the phenomenon of interest. While this solution is viable, it
is impractical when it comes to a either a large-scale geographic
region e.g., a city, or when the geographic region contains too many
individuals to be reasonably queried. A budget constraint is a vital
factor to consider in order to (i) save energy for resource constrained
systems, e.g., disaster [17] and safety applications, because in an
emergency, communication networks tend to fail and resources, such
as bandwidth, are scarce [11]; and (ii) prevent users from becoming
overwhelmed by queries and reaching a point where they cease using
the crowdsensing system.

In our work, we address what we term the “spatially-blind par-
ticipatory crowd sensing” problem. In this problem, the SC task
requester is not able to specify a precise location for a task but in-
stead only a larger geographic region due to a lack of geographically
tied distribution information about the phenomenon. In particular,
our goal is to answer the following research question: given the real-
time interest of an SC requester in a specific geographic region, and
a specific phenomenon of an unknown spatial distribution, who are
the workers the SC server should query given a budget constraint of
selecting N out of M crowd workers, where N < M, to maximize the
probability of coverage for the phenomenon?

To answer this question, this paper contributes the following:

(i) We define the problem of spatially-blind crowdsensing under
budget constraints. To the best of our knowledge, we are the first to
study this problem.

(i1) We define two types of queries under the setting of spatially-blind
crowdsensing: binary and exploratory queries.

(iii) We propose two novel algorithms, one that does and one that
does not rely on worker feedback (DispNN and DispMax, respec-
tively), to select N out of M workers based on their locations, where
N < M. We compare our algorithms to random selection and a
greedy heuristic [6]. We study the performance of our proposed
algorithms under two event distributions: clustered and complete
spatial randomness. Our algorithms outperform random user selec-
tion by up to 30% and the greedy heuristic by up to 5x more detected
incidents. We then test the algorithms on a real dataset of street
harassment reports in three different cities and show the applicability
of DispNN and DispMax in detecting incidents and locating workers
close to these incidents without any prior knowledge of the incident
distribution. Although we discuss the spatially-blind participatory
crowdsending under budget constraints problem under the umbrella
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of crowdsensing, our work could be extended to other communities
of artificial sensors, mobile phones or even robotic sensors.

2 RELATED WORK AND MOTIVATION

Since the introduction of “crowdsourcing”" as a modern business
term [8], a significant body of work has been dedicated to the
study and implementation of crowdsourcing in real life applica-
tions. Spatial crowdsourcing (SC), where the information sought
is bound to a particular geographic area, has received significant
attention [4, 9, 22]. A number of fundamental challenges persist for
the design and implementation of SC platforms. Zhao and Han pro-
vide a taxonomy of SC, with categories associated with the worker
model, task model, response model, and optimization goal of a SC
problem [23]. SC problems are split into two categories: problems
where servers assign tasks to workers (SAT) and problems where
workers select tasks (WST). Each of these two types of problems
can be split further based on the worker model used for the problem;
reward-based problems and self-incentivized problems. DispNN and
DispMax provide a task assignment solution for reward-based SAT
problems that seek to generate information about some environment
(e.g., neighborhood, city, park, concert) with high coverage of the
environmental area.

Beyond our contributions to the general area of SC using reward-
based SAT, there is a specific SC problem that we seek to address:
event-detection. Kazemi and Shahabi formally propose the maxi-
mum task assignment (MTA) problem as well as several solutions [9].
While solutions to the MTA problem seek to optimize task assign-
ment given a number of spatially known tasks and workers at a
specific time interval, they still require a priori information about
the location of events and do not incorporate a notion of resource
budgeting. Most similar to our work are [16, 20, 21]. In [20, 21],
the goal is to maximize the system utility through a focus on task
allocation under sensing capability constraints. In contrast, our goal
is to maximize spatial situational awareness. In [16], To et al. in-
troduce adaptive budget algorithms used to perform real-time task
assignment in hyperlocal SC under budget constraints. However,
the algorithms introduced require real-time information about the
location of events of interest. In contrast, we seek to enable detection
of events for which hyperlocal spatial information is not previously
known. Our solution is particularly important for gathering informa-
tion about small-scale, ephemeral social events.

As cities become smarter and cyberphysical systems become in-
creasingly pervasive, there is an increasing need for SC platforms
that are designed to flexibly collect quality data using methodolo-
gies that adapt to the dynamic intersections of human behavior and
complex systems. One of the most critical aspects to designing city-
scale SC platforms is resource scalability. To leverage the crowd for
location-based data collection at a large scale, spatial crowd-sourcing
platforms must be able to minimize resource consumption to harvest
high quality data. For a SC task, resources may include network
bandwidth, energy, user attention, time, and money. In particular,
our work focuses on information queries that are best answered via
human interpretations of the environment (e.g., “Are you feeling too
cold, too hot, or comfortable right now?” vs. *‘What is the tempera-
ture outside today?” or “On a scale from 1-10 how safe do you feel
right now?” vs. “Is your bus stop well lit?”).

3 PRELIMINARIES

In this section, we introduce relevant definitions and offer examples
of motivating queries.

An incident is a real-time event or phenomenon that occurs at a
particular location. An incident is tied with the specific geographic
region around it; any worker in this region is able to sense or detect
the incident. We model this region as a circular geographic space cen-
tered around the incident location with a specific radius. The larger
the radius of the incident, the higher the probability that workers
will be able to detect it. For example, the effect of a hurricane can be
sensed over an entire city; however a street harassment incident can
only be sensed if the worker is within a few meters. In the problem
of “spatially-blind participatory sensing,” the location of incidents is
not known to the SC server or the requester. It is therefore vital to
design a smart algorithm that tries to capture as many incidents as
possible in the spatial area of interest. More formally, an incident i
of form < id, [, r > is an incident at location [ and can be detected
by all workers within a circular space centered at [ with radius r.

A worker is a person or device, i.e. a sensor or node, who can
sense an incident in their vicinity. Formally, a worker w, of form
< id,l >, is a mobile device carrier, or the device itself, who is a
subscriber of the crowdsensing application and can report an incident
of interest, in their geographic vicinity, to the SC server in real-time.

A real-time information query is a query sent by the SC server
to workers in a spatial region to inquire about one phenomenon
of interest in real-time. We envision two types of queries. First, a
binary query, which requires a yes/no response. As an example, a
binary query could be “Is your location affected by the hurricane?”
or “Do you feel safe in your location?”. This query is beneficial to
obtain a high-level understanding of the spatial occurrence of the
phenomenon of interest. A second type of query, an exploratory
query, seeks to understand incidents at a more fine-grained level.
The objective of this query is to eventually draw an approximate
heat map of the phenomenon for the spatial region. Examples of this
query include ‘‘On a scale from 1-10, how safe do you feel right
now?” and “Is your location highly-walkable, somewhat walkable,
or car-dependent?”

Finally, a spatially blind worker selection algorithm under
budget constraints is an algorithm that runs on the SC server that
aims to select workers under a specific budget of N out of M total
workers without any prior knowledge of the incident spatial distri-
bution. Since the algorithm is spatially blind to the incident spatial
distribution, we cannot model the worker selection as a Maximum
Task Coverage problem which is known to be strongly NP-hard [6].
Instead we have to devise a method of worker selection to maximize
the spatially unpredicted incident coverage.

4 PROBLEM STATEMENT AND MEASURES

Spatially-blind participatory crowdsensing under budget con-
straints. In our system, we have a two-dimensional geographic
region and a number of online workers (M) that can sense the en-
vironment around them. We investigate how to distribute queries
within predefined geographic regions in the case of limited resources.
To meet this constraint, we bound the system by a specific number of
probes per time slot. Hence, the question becomes: Given M workers
and N resources, where N < M, which N workers should be queried
to sufficiently answer a spatially-constrained query? In other words,
how should the SC server select these N workers?



If we tackle this question from a probabilistic point of view, then

the straightforward answer is to try to select workers with the same
spatial distribution as the phenomenon in the geographic region. For
instance, if we know that a certain phenomenon occurs uniformly in
the region, then we would have no bias in selecting the workers to
query, i.e. each worker should have the same probability of selection.
On the other hand, if we know the phenomenon is more prevalent
in certain areas of the region, we should incorporate information
when selecting the workers such that more workers are queried in the
area of interest, where the phenomenon is likely to occur, and fewer
workers in areas where there is a smaller probability of occurrence.
The question becomes far more challenging if the distribution is
not known or if it is not stationary. In this case, we ask if there
is a systematic algorithm that can be used for selecting workers
to spatially identify a phenomenon regardless of the probabilistic
distribution or time variation.
Measures. To quantify the performance of the different approaches
to solve the spatially-blind participatory crowdsensing under budget
constraints problem, we propose the following three metrics for
the output of the worker selection algorithm, which is the set of N
workers that are queried (Queried Workers), denoted by QW. Let
QW = {qwy, qw,, ..., qwy'}

e Coverage (COV): the number of incidents covered out of the
total number of incidents that occur in the 2D geographic
region. We define an incident as covered if the algorithm
selects at least one worker in the range of the incident to be
queried. Let the set of incidents that occur in the geographic
region be {ij, ..., iy } and Range(iy) denote the set of workers
in range of incident ig, where a worker (w;) is defined to be
in the range of an incident if dist(w(l);, i(1)) < i(r). Coverage
is formally measured as:

I
COV = Z Coveragey. (1)
k=1
where,

1, if (Range(ix) N QW) # ¢

Coveragey. =
9k {0, otherwise

e Close worker count (CWC): the absolute number of workers
in the range of each incident for all incidents:
I
CWC =" |(Range(ir) N QW)| @)
k=1
e Redundancy (RED): the average share of workers per covered
incident, defined as:

RED = CWC/COV A3)

5 ALGORITHMS AND METHODOLOGY

We assume that there are M online workers in a two-dimensional ge-
ographic area. The server that selects workers to query is bounded by
N resources, where N and the geographic region are pre-determined
by the SC requester. Each of the M workers has a specific location in
the spatial area, determined by a two-dimensional system, e.g. (x, y)
or a (latitude, longitude). We assume that the selected workers will
respond to the query. If needed, a pre-selection phase can be used to
eliminate workers that are not likely to co-operate, such as requiring
the installation of an app to facilitate querying. The focus of the

worker selection mechanism is how to select N out of M nodes,
where N < M, to maximize incident detection.

DispNN and DispMax algorithms. Suppose a requester wishes
to identify unsafe areas in a geographic area (G) using only N
worker probes. The requester provides the server with the following
information: < G, Q, N, ANS >, where Q is the query related to
the phenomenon of interest and ANS is the answer to the query
for which the server will probe further, e.g., ANS = No for Q =
“Is it safe around you?”. Since the SC server is spatially-blind
with respect to the incident distribution, we can envision a solution
that tries maximize the spatial variation of N worker locations so
that the geographic area is covered. One measure of the degree to
which points in a point set are separated from each other is spatial
dispersion [1] measured as tr(cov(P)), where tr and cov denote the
trace and covariance operations. Here, the point set is represented
as a matrix P where each row represents a point p. Hence, the
crowdsensing problem could be modeled as maximizing the spatial
dispersion for the N workers i.e., selecting a set of N workers,
QW = {qw(j), j € {1,..., N}}, such that argmax tr(cov(QW(l)))

Qw

where QW (I) represents the matrix of the locations of the queried
workers as follows:

gwi(l)
Qw() = :
gqwn (D)

In order to ensure a globally optimal solution, we can compute

the dispersion of all (%) worker location combinations and choose

the combination with the maximum spatial dispersion as the set of

queried workers. Solving argmax tr(cov(QW(I))) by generating all
Qw

possible worker location combinations is of a complexity exponential
in N. More generally for a fixed N, this yields a complexity of
O(M!/N!(M — N)!) which could become unrealistic for real-time
applications as M and N increase. Instead, we propose to use Lloyd’s
K-means clustering algorithm [10], which tries to place the centers
of the clusters as far away from each other as possible. We can then
apply Lloyd’s algorithm by computing the N-means clusters and
choosing the workers with the closest locations to the centroid of
each of the N clusters as a way of maximizing the dispersion of the
N workers. Using Lloyd’s algorithm yields a complexity of O(MN),
assuming constancy of point dimensions and number of iterations
needed until convergence [10]. This method represents the core of
DispMax and the first stage of DispNN.

Another concept that can be applied to this problem is Thompson
sampling, which is a heuristic for choosing actions that address
the exploration-exploitation dilemma in the multi-armed bandit
problem [12]. In our problem, we can design an algorithm that
combines the concepts of exploration and exploitation. We define
exploration as the process of maximizing the dispersion of worker
location so that we can explore the geographic region. On the other
hand, the concept of exploitation relates to making use of worker
feedback about the incidents in the selection of other workers. For
instance, using exploitation, if a worker (ws) indicates that it is not
safe around them by answering “No” to the query “Is it safe around
you?”, the server could exploit that answer and dedicate a subset of
the N probes to some workers close to ws. Querying the neighboring
nodes can provide the requester with information related to spatial



correlations and can help the requester bound the region in which
the phenomenon occurs.

Based on this prior work, our algorithm, DispNN, selects N of
M workers in a geographic region by dividing the selection into two
phases: (1) Disp: the dispersion maximization phase (Exploration)
and (2) NN: the use of worker feedback to query the nearest neigh-
bors (Exploitation). These two phases work under the total budget
constraint N; a percentage (FSP) of N is dedicated to the Disp phase
and the percentage (1 — FSP) of N is used to query the nearest neigh-
bors of workers of interest based on the initial query response. If
there is not sufficient feedback to locate nearest neighbors, we use
the remaining resources towards another round of exploration.

DispNN assumes workers are not malicious and thus it oper-
ates under the single task assignment paradigm [9]. A variation of
DispNN would be to not rely on user feedback; in this case the
algorithm will dedicate all N probes towards the first phase, Disp.
We call this algorithm DispMax. DispMax is beneficial to use in
two scenarios: when the SC server cannot assume full trust in all
workers, and when the SC server receives an exploratory question
for which the intent is to build a heat map of the distribution of the
answers, e.g., categorizing areas of a city as “extermely-walkable,
some-what walkable, or car-dependent”.

6 EXPERIMENTS AND RESULTS

Experiment setup. Real world phenomenon rarely follow com-
plete spatial randomness [15]. Hence, we study the performance of
DispNN and DispMax under three different event distributions: clus-
tered, random, and real-world datasets. There are multiple variables
that can be controlled to test the behavior of DispNN and DispMax.
Table 1 summarizes the most important experimental parameters.
In all of our experiments, except the case study on real-world data,
we use a 10x10 spatial grid and the Euclidean distance to measure
the straight line distance between locations. Since it is unrealistic
to assume that workers are uniformly distributed across the spatial

area, we model the worker location distribution as a mixture of a

crowd count

Poisson point process [15] with A = and a cluster pro-

cess where the other half of the crowd is distributed across a number
of clusters that varies between [1, 10] and is chosen randomly. We
compare our algorithms for worker selection to three alternative
approaches and one optimal approach as follows:

e Random worker selection (Rand): we select N workers ran-
domly based on a uniform distribution, i.e., each worker has
the same probability of being selected.

o Greedy worker selection (Greedy): we apply the greedy heuris-
tic proposed in [6] to solve the Maximum Task Coverage prob-
lem. At each iteration, the heuristic selects the worker that
covers the maximum number of uncovered tasks; however,
because the incident distribution is not known, we modify the
heuristic. We choose the worker that is likely to cover part of
the geographic space that is not covered. We start by selecting
a worker randomly and then iterating through the rest of the
workers and select the worker that will maximize the spatial
dispersion. We continue iterating until we have N workers.

e Random with feedback worker selection (Randf): we use
random worker selection in the first phase then apply the
feedback process similar to the DispNN methodology.

e Optimal coverage (OptCov): we assume full knowledge of
incident and worker locations and select N worker locations

incident count: number of incidents distributed across the cells of the

spatial matrix.

incident range: the radius of an incident where, if a worker is present

within the radius, he/she will be able to detect the incident.

crowd count: the M workers from which N will be chosen to query,

where N < M.
N: the number of workers the SC server is limited by to query.

first stage percentage (FSP): the percentage of workers of the N re-

sources that will be selected to query in the Disp stage.

Table 1: Parameters used in experiments.

that maximize the number of incidents covered. We use this as

a reference for the maximum coverage obtained if the server

was aware of the incident distribution.
Generic observations. There are many variables that can affect
the output of the experiments. For instance, we found that as the
range of incidents increases, all approaches tend towards the same
performance. The same observation is true as N approaches M. As a
result, we stress the different approaches by modeling incidents with
smaller ranges. An interesting trade-off for DispNN is related to the
choice of FSP. As FSP increases, COV increases but CWC tends to
decrease and vice versa, for clustered distributions. We find that a
good choice for FSP, that strikes a balance between COV and CWC,
is 0.8, i.e., 80% of the probes allocated to the Disp phase and 20%
for the NN phase.

6.1 Clustered incident experiments

Geographer Waldo R. Tobler stated in the first law of Geography:
“Everything is related to everything else, but near things are more
related than distant things” [19]. In this set of experiments, we
assume that the incidents are related to each other, i.e. they form
clusters across the 2D spatial region as shown in Figure 1. Our goal
in these experiments is to study the performance of the different
query algorithms when the incidents are clustered.

We vary the number of clusters in our 2D spatial area from one
to ten while fixing the incident count to be 50 with a range of 1 unit
distance. We set crowd count to 60 and N = 30. To enforce data
variability, we model the size of each cluster as a random variable
while ensuring that the aggregated size of all the clusters is equal to
crowd count. For each number of clusters, we average results over
100 different random configurations.

Figure 2 illustrates COV, CWC and RED aggregated over all
random configurations of clustered incidents. DispNN and DispMax
outperform Rand, Greedy and Randf. DispNN and DispMax achieve
a median coverage of 60% while the median OptCov is 70%. Rand
(4 = 47.8,0 = 18.4) and Randf (y = 47.7,0 = 17.9) provide a
median coverage of 48%, while Greedy (u = 41.9, ¢ = 20) results in
a median of 40% coverage. With respect to coverage, DispNN out-
performs Rand, Greedy, and Randf by an average of 22.5%, 39.8%
and 22.7%, respectively, and it comes within 13.3% of OptCov. Sim-
ilarly, DispMax outperforms Rand, Greedy, and Randf by an average
of 23.8%, 41.3%, and 24.1%, respectively, and comes within 12.4%
of OptCov. Randf and DispNN achieve a higher CWC than Rand
and DispMax since they rely on worker feedback; their NN selec-
tion phase selects workers that uncover other incidents because of
the clustered nature of the incidents. DispMax achieves the lowest
median RED of 1.3, since it maximizes the location dispersion of
workers without relying on any feedback.
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Figure 2: COV, CWC, and RED for distributions of clustered
incidents.

6.2 Complete spatial randomness experiments

In the next set of experiments, the probability of occurrence of
an incident is uniform across the spatial region. Incident occur-
rence in the spatial area follows a Poisson point process with y =
A = incident_count. We randomly generate 100 different spatial re-
gion incident configurations. On average, the spatial matrix contains
incident_count incidents. We operate under the same settings where
incident_count = 50 with a range of 1 unit distance and M = 60, and
N = 30. Figure 3 shows that DispNN outperforms Rand, Greedy, and
Randf in terms of coverage by 18.4%, 62%, and 26.2%, respectively,
and comes within 11.7% of OptCov. Similarly, DispMax outperforms
Rand, Greedy, and Randf by 26.9%, 73.6%, 35.2%, respectively, and
comes within 5.4% of OptCov. We note that DispMax consistently
performs closer to OptCov than DispNN. Because of the random
distribution of incidents, there are no spatial correlations, unlike in
the previous clustered distribution. Hence, there are fewer workers
for DispNN to exploit in the NN phase. For the same reason, Randf
performs slightly worse than Rand in terms of coverage. Apart from
OptCov, DispNN and DispMax achieve the lowest RED since they
focus on maximizing the dispersion. The result is higher incident
coverage, on average, with workers more geographically dispersed.

6.3 Case study: Hollaback street harassment data

After applying DispNN and DispMax to the previous two distri-
butions, we wish to examine the algorithms under real incident
distributions. To do so, we test our algorithm on a global street
harassment dataset provided by Hollaback [7].

Data overview. Hollaback is a non-profit movement powered by
local activists in 92 cities and 32 countries to end street harassment.
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Figure 4: Distribution of harassment incidents across represen-
tative city datasets.

Through the Hollaback phone app and the online platform, users
worldwide can report stories of street harassment to share with the
Hollaback community. In some communities, local governments are
informed in real-time about street harassment. The Hollaback app
uses GPS to record a data set of street harassment event locations
as a means of improving the collective understanding of street ha-
rassment. As of January 2016, over 8000 street harassment incidents
have been recorded in the dataset since February 2011. It is on this
data set that we test DispNN and DispMax.

Analysis. From the Hollaback dataset, we select two cities (Paris,
and Brussels) for which we have enough harassment samples for
statistical significance (i.e. more than 30 samples). We test the per-
formance of the six querying approaches on these cities. As a first
step, we parse the Hollaback dataset such that incident reports are
grouped by city. To do so, we use bounding box coordinates and
shape files for each city to determine incidents bounded by the city
borders and we remove any outliers. Figure 4 shows the resulting
distribution of events for the two cities. The Paris dataset contains
197 harassment incidents and covers an area of 28.2 mi2, while the
Brussels dataset contains 154 incidents covering a geographic area
of 28.4 miZ.

For each of the cities, we generate 100 different variations of
crowd locations (M = 1000) and set N = 500. In this analysis,
incident_count is taken directly from the Hollaback dataset. We
update the distance metric and use the Haversine formula to calculate
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Figure 5: COV, CWC, and RED for Paris, and Brussels.
the great-circle distance between two points as follows:
d = 2R % atan2(\a, V1 — a) “)

where a is calculated as sin?((A¢$)/2)+cos(¢1) cos(¢hz)+sin®((A1)/2);
A¢ and AA are calculated as the radian difference between the lati-
tudes and longitudes, respectively; and R is the Earth’s radius. Since
a harassment incident cannot be witnessed unless a worker is very
close, we adjust the incident range to 5 meters. We measure COV,
CWC and RED aggregated over all random configurations of worker
distributions for all six querying approaches and plot the results in
Figure 5. DispNN and DispMax achieve close to optimal coverage in
the case of Paris and Brussels. The median coverage using DispNN
and DispMax for Paris and Brussels was found to be 96.4 and 90.1,
respectively. We note that Greedy performs poorly for all cities. The
reason is that at each step, Greedy chooses the point that maximizes
the dispersion. The result is it selects the majority of the workers
around the borders of the geographic region where the number of
harassment incidents are minimal.

7 CONCLUSION

This paper proposes DispNN and DispMax, spatial querying algo-
rithms that select workers to discover randomly placed events within
a 2D spatial environment through intelligent probing of worker re-
sources. While the experimental evaluation confirms the applica-
bility of proposed approaches, the algorithms could be adjusted to
accommodate prior information about the nature of the events. If
an approximate spatial distribution is known, we can use weights to
reflect the probability of occurrence in each spatial sub-region and
then apply DispNN and DispMax on each of the sub-regions. On the

other hand, knowledge of spatial correlations and event stationarity
could be used to manipulate worker selection. Our work is applica-
ble in numerous scenarios, particularly when resource preservation
is important and when querying all nodes will cause too large a
disturbance or a response implosion.
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