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SafeRoute: Learning to Navigate Streets Safely
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Recent studies show that 85% of women have changed their traveled routes to avoid harassment and assault.

Despite this, current mapping tools do not empower users with information to take charge of their personal

safety. We propose SafeRoute, a novel solution to the problem of navigating cities and avoiding street ha-

rassment and crime. Unlike other street navigation applications, SafeRoute introduces a new type of path

generation via deep reinforcement learning. This enables us to successfully optimize for multi-criteria path-

finding and incorporate representation learning within our framework. Our agent learns to pick favorable

streets to create a safe and short path with a reward function that incorporates safety and efficiency. Given

access to recent crime reports in many urban cities, we train our model for experiments in Boston, New York,

and San Francisco. We test our model on areas of these cities, specifically the populated downtown regions

with high foot traffic. We evaluate SafeRoute and successfully improve over state-of-the-art methods by up

to 17% in local average distance from crimes while decreasing path length by up to 7%.
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1 INTRODUCTION

Many women take alternative and sometimes longer routes than those that are recommended by
navigation applications, such as Google Maps. This is due to fear of harassment or violence when
walking alone or with other women on the streets, especially at night. In a street harassment
study by Cornell University and Hollaback from 2014, researchers interviewed 4,872 U.S. women.
They found that 85% of these women have taken a different route home or to their destination to
avoid potential harassment or assault, and 67% changed the time they left an event or location [5].
While those local to an area might know which streets are safe or risky and can take their own
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“safe routes,” others visiting a new city will most likely be unaware of the places they should
avoid. Tourists have to research criminal activity ahead of their planned trip to stay informed
when walking unfamiliar streets. The creation of a safe routing application is more critical than
ever. Data collected from 61 metropolitan police agencies showed an 11% increase in homicides
in 2016, the second year in a row with such development [10]. With a safe routing application,
women, tourists, students, and others will have the resource to increase their safety and peace of
mind when walking in an urban environment.
In this article, we focus exclusively on non-vehicular travel, such as walking and biking. Walka-

ble cities like New York City, London, and Boston typically have multiple potential routes between
any two points. We want to compute short and risk-free paths and create a balance between the
two objectives. Existing state-of-the-art methods also focus on populated cities but have the dis-
advantage of using crime density maps to create paths that smooth over smaller clusters of crimes
and, therefore, ignore smaller crime hotspots.
Recent contributions in deep reinforcement learning (RL) show the possibility of short path

navigation [15]. However, ourmodel aims to go beyond this and has the complex goal of navigating
safely in addition to finding a short path. To provide safe routes, we choose a solution based on
deep RL, which is a natural choice for many datamining problems that require making incremental
decisions. Instead of requiring supervised signals at every time step, the policy can be refined
based on a single long-term reward signal. This has many advantages over classical algorithms
such as Dijkstra [3] and A* [7]. Deep RL allows us to integrate a continuous vector as its agent’s
state representation and utilize different types of information, such as graph embeddings. We can
also directly train the agent to co-optimize several goals at once, according to user preferences.
For example, the continuous state vector can include the agent’s location on the map and time
of day. Classical algorithms cannot explicitly define these multiple optimizations. With deep RL,
we can model the user scenarios and perform approximation for these goals, acting as a more
practical solution. The flexible architecture also allows us to utilize different learning techniques
and learn to adapt to new data. Given that crimes occur daily, safety parameters are continuously
changing, and themodel would be able to incorporate online learning techniques for these changes
in the future [18]. Other existing approaches to safe path-finding do not use RL to generate paths.
While there are existing classical RL systems in route planning [1, 25, 31], they cannot provide
the many advantages that a deep learning architecture can provide, such as the continuous state
space for different types of information, utilization of representation learning, and policy gradient
techniques.
We propose SafeRoute, a novel solution to the problem of safe path-finding using deep RL. The

goal of SafeRoute is to provide users with a safe and short route to their destination. The RL agent
learns to choose a safe street at each step that leads from a starting to destination intersection. We
test our results against paths found using an existing—non-reinforcement—algorithm (SafePath)
that also utilizes crime information when calculating safe routes.
SafeRoute makes three contributions to the problem of safe path-finding:

—We are the first to consider deep RL to solve the problem of multi-objective path-finding.
—We propose a reward function for optimizing safety and length in generated paths. As op-
posed to using geographical coordinates, we utilize graph embeddings based on local street
connectivity to represent maps to create an improved learning environment for our agent.

—Our model produces results with up to 17% relative improvement in local average distance
from crimes over the state-of-the-art model with samples from maps of Boston, New York,
and San Francisco.
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2 RELATEDWORK

Safe Routing: There are existing studies that explore the balance between safety and efficiency
in routing. One such application, SafePath, creates safe paths for users and optimizes for both
safety and distance [4]. Using a crime density map, SafePath assigns risks to streets and outputs
paths varying from shortest to safest. A safe path application for Mexico City utilizes tweets and
official crime reports to classify and geocode crimes with a naive Bayes classifier [14]. However,
it does not consider geographical distance in its algorithm and only focuses on creating paths
based on safety. Similarly, SocRoutes creates safe routes using geocoded tweets and routes users
through points around unsafe regions [11]. SocRoute performs sentiment analysis on tweets and
categorizes regions on a map as unsafe when they have more negative tweets on average. To
generate its routes, it first creates the shortest path to the destination and, if the path goes through
an unsafe region, it moves its waypoints to be outside of that region. While these approaches focus
on crimes on a larger scale, our model concentrates on crimes at the street level. A user would most
likely not choose to deviate from the shortest path by too much, so previous works would either
ignore smaller crime hotspots or route users in a much longer distance around a larger crime area.

Multi-Preference Routing: Multi-preference or multi-criteria routing algorithms optimize
routes for users with more than one objective, such as our model. One such variety considers both
distance and either happiness, beauty, or quietness when generating paths by re-ranking a top-k
list of shortest paths according to the second objective [17]. However, if the top-k list of paths is not
diverse enough from the shortest path, it may be hard to optimize the second objective. One of the
more common models of multi-preference routing optimizes distance and traffic conditions. For
instance, the PreGo system creates paths based on multiple user preferences such as time, scenery,
and road conditions through a single traversal of the graph-based map [8]. Though this system can
route based on the risk factor, it does not incorporate distances from risks near edges, which does
not give enough information about street safety. Another system, T-Drive, optimizes both distance
and time using GPS taxi information and distance to model routes [29]. However, there is no ex-
plicit way to include crime information in this process. The Advanced Route Skyline Computing
(ARSC) algorithm, introduced in Reference [13], finds non-dominated paths using a best first graph
search. Though these models create routes based on multiple criteria, most do not utilize crime
information while routing, which can lead to the generation of unsafe paths. Additionally, our
model’s continuous state space allows us to incorporate various attributes into our state and inte-
grate representation learning of the networkwith explicit path-finding.Multi-criteria optimization
falls into the category of NP-hard problems and is not solvable by theoretical computer science.
However, deep RL allows us to perform approximation within the learning-to-search framework.
Another reason for the use of deep RL is the ability to integrate human feedback into the model.
As risk is not deterministic, other non-deep RL approaches fail as they need explicit functions to
define risk. Human feedback can help provide policy updates and continuously learn and shape
the model even more toward a human-generated path. To elaborate, users can decide whether they
like a provided route, and the model can be rewarded or punished for future generations of paths
in the area. With such advantages, it is clear that our task can benefit from the use of deep RL.

RL in Navigation: In Reference [2], a deep RL model learned to localize itself on a 2D map from
a 3D perspective and find the shortest paths out of its mazes. The Reinforced Planning Ahead
(RPA) model uses a combination of model-based and model-free learning for visual navigation
with textual instructions [23]. Recently, Google’s DeepMind has created a deep RL model that
trains on Google Street View to navigate cities without a map [15]. For tasks of reaching a desti-
nation point, the model represents the target in relation to its distances from landmarks nearby.
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One of the drawbacks of image-based navigation is the amount of data required for training. Fur-
thermore, SafeRoute attempts to co-optimize the two goals of safety and distance, which would
result in additional training to not only find a target with unstructured image data but also clas-
sify unsafe streets and avoid them. Reference [31] utilizes Q value-based dynamic programming to
find optimal routes based on different objectives. However, its experiments execute on networks
of up to 10 nodes, and the algorithm does not scale well to larger networks in real-world set-
tings due to space complexity. Additionally, the model uses discrete states, which utilizes a fixed
state-action table and cannot generalize to unseen states. With SafeRoute’s simple deep RL archi-
tecture, it can easily include other parameters to the model’s input for optimization and allow for
the learning of a more descriptive network map. When adding new nodes to the network, they
will have values/states similar to those of nearby nodes, and the model will continue functioning
as is. Graph-based navigation appears in some deep RL frameworks. DeepPath [27] uses deep RL
to infer missing links within a knowledge graph. Network packet routing applications also utilize
RL [1]. However, this method utilizes only discrete states equalling to the packet’s current node in
the network and focuses on only packet delivery time. Another method trains on maze navigation
recordings to build a topological map and later navigate to a destination within the maze [20].
Despite prior work in safe path-finding and multi-preference routing, SafeRoute differentiates

itself by (1) analyzing crimes in the direct path area in order to generate its routes, (2) utilizing con-
tinuous state space to allow different types of information as input and incorporate representation
learning, and (3) enabling human feedback through policy updates.

3 SAFEROUTE

We can view the route finding process as a Markov Decision Process. At each timestep, the agent
decides which compass direction to go next, eventually leading to the final destination. The start
and end coordinates of intersections are input into the model, which returns a list of coordinates
relating to the agent’s incremental decisions. By rewarding the agent for avoiding crime-filled
streets, we create a safe path for the user. The following section describes the framework and
the training and testing pipeline behind the deep RL architecture of SafeRoute. The environment
and policy-based agent are discussed, along with the rewards system, and used to find short and
safe paths within a map. Additionally, the two forms of training (pre-training and retraining with
rewards), along with the testing algorithm, are described.

3.1 Architecture

The SafeRoute system splits into two parts: an environment with which the RL agent interacts, and
the policy network the RL agent represents and uses tomake decisionswithin the environment.We
show the SafeRoute architecture in Figure 1. The environment is represented as a Markov Decision
Process with tuple < S,A, P ,R >. S represents the continuous states of the environment and A =
{a1,a2, . . . aN } defines all actions available to the agent. P (St+1 = s0 |St = s,At = a) determines the
probability of moving from one state to another. R (s,a) is the function that rewards the agent for
taking action a when in the state s .

States: The agent’s state represents its current status on the map. In our model, the state uses
the agent’s current and target position. Including the target position allows the agent to relate
actions to the end goal, so if it is in the current position at a later time with a destination in the
opposite direction from before, the agent will not take the same actions. Furthermore, the agent
can generalize better to new unseen states. If the new target is near one the agent has trained on,
the agent will take similar actions toward the new goal when starting from the same area. Map
information is transformed into a graph with street intersections as nodes and streets connecting
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Fig. 1. The SafeRoute model containing the map environment and policy-based agent. The gray pins show

recent crimes occurring in the area. We feed the current state into the agent’s neural network, which outputs

the action to take. After performing the action in the environment, the reward is collected and used to update

the agent’s policy.

two nodes as edges. We represent the graph as a directed graph with a compass direction for each
edge. To represent the continuous states of the RL agent, we use graph embeddings (generated
with node2vec [6]) instead of the latitude/longitude coordinates. The reasoning behind using graph
embeddings as opposed to coordinates is that coordinates do not give any information as to how
intersections connect on the actual map. The embeddings can also learn additional information
captured in the road network, such as street popularity, as a user preference by including it as a
weight in the road network graph before generating the embeddings. In the initial iterations of
the project, we used coordinates to represent states. However, even with pre-training, our model
was unable to learn to navigate the map. With the graph embeddings, the model can determine
the streets that lead to certain intersections and, eventually, the final destination. The states use
embeddings from the agent’s current node and target node as follows:

st = (et , etarдet − et ),
where et denotes the embeddings of the current node and etarдet denotes the embeddings of the
target node. The subtraction in the second half of the state helps determine the target’s direction
and distance from the current position. Due to themodel’s deep learning architecture, other factors
can be included in the state vector, such as time of day and distance flexibility, allowing the model
to train for multiple user scenarios. We can include these as vectors concatenated with the existing
state input.

Actions: Actions in the environment represent moving from one street intersection to another.
The actions themselves are compass directions (North, Northeast, East, Southeast, South, South-
west, West, Northwest). The RL agent learns to pick actions, out of all available actions, that lead
in the direction of the target intersection while also moving away from high crime areas.

PolicyNetwork:The policy network representing the RL agent uses a stochastic policy, πθ (s,a) =
p (a |s;θ ), where θ is the list of neural network parameters. We use a stochastic policy instead of
a greedy policy to prevent the agent from getting stuck in cycles on the map. Using a stochas-
tic policy, the agent can break free of cycles, such as repeatedly moving toward a dead-end that
appears to be leading in the right direction or continually taking a path that will eventually re-
sult in a dead-end. The neural network contains two hidden layers, each with a rectified linear
unit (ReLU) activation function. The output uses a softmax function and returns a probability
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distribution over all actions. We prune the actions for those not available at the current inter-
section, and the remaining probabilities are normalized and returned. At a high level, the neural
network takes as input a state s and outputs a normalized probability distribution over all available
actions.

Rewards: The agent optimizes multiple preferences, so the reward function must consider several
different factors. Since an integral feature of SafeRoute is to avoid crime areas when creating a
route, we add safety into the reward as a function of average distances from previously known
crime scenes. A list of recent crimes in the city is traversed for those at a certain radius from the
current location. The radius and location vary per edge along the path. The location used is the
midpoint along each edge, and the radius is equal to the length of that edge. The average distance
from crimes within the radius at each step is then calculated. The average distance is used as
opposed to directly calculating the number of crimes because we value more crimes at the edge of
the radius as better than fewer crimes directly along the route.
Although the primary goal of SafeRoute is to increase safety by generating routes that lead away

from high crime areas, we also want to consider efficiency in our reward represented by the path
length. The total average distance from crimes along the path is calculated and then divided by the
path length. If there are no crimes near the path, κ is used as a reward. All other paths are assigned
a reward proportional to their average distance from crimes divided by the path length. The final
reward is defined below:

rCRIME =

⎧⎪⎪⎨
⎪⎪
⎩

∑n
i=1
∑m
j=1

distance (xi ,ci j )∑n
i=1 number (ci )

lenдth (p ) , if c � ∅
κ, otherwise,

where n is the number of edges along the path,m is the number of crimes within the radius at each
node, x is the list of edge midpoints along the path, c is the list of crimes in each radius, p is the
path, and κ is a hyperparameter. With this reward in place, shorter paths will be rewarded more
than longer paths with similar crime rates.

3.2 Training

Training for SafeRoute comes in two parts: pre-training and retraining with rewards. Without pre-
training as the initial step, the agent will have a hard time finding a path to the target node and
can end up wandering in random directions. AlphaGo [21] uses imitation learning [9] as the first
step in its training process in order to give the agent an initial push when starting to train with
rewards. Similarly, we also start the training pipeline of SafeRoute with pre-training as its form of
imitation learning.

Policy Pre-Training. In SafeRoute, one of the criteria for a good path is a short distance. There-
fore, we initially train the policy network by rewarding the shortest paths for each training episode.
In addition to helping optimize one of our goals of a short path, the pre-training helps the agent
balance exploration vs. exploitation during the second portion of training and not rely entirely on
exploration. This effect of pre-training is seen in other deep RL models, such as DeepPath [27].
The training samples used include a randomly sampled starting intersection on the map and sev-
eral endpoints at a 5-hop distance on the respective graph. We shuffle these samples, and each
episode uses Dijkstra’s algorithm for shortest paths using the edge length as the weight. At the
end of each episode, the neural network parameters θ update to reward the actions taken at each
state. Each state-action pair, corresponding to a step t along the path, is rewarded equally using
Monte-Carlo Policy Gradient (REINFORCE) [26]. The reward given for each episode’s steps during
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ALGORITHM 1: Algorithm for retraining with rewards

1 for episode ← 1 to N do

2 Initializemax_rwd ← 0.0

3 Initialize avд_rwd ← 0.0

4 Initialize num_success ← 0.0

5 Initializemax_path ← ∅
6 for i ← 0 to T do

7 Initialize state vector st ← s0
8 Initialize episode length num_steps ← 0

9 while num_steps < max_len do

10 Randomly sample action a ∼ π (a |st )
11 Add < st ,a > to path

12 if success or num_steps =max_len then

13 if success and RCRIME > max_rwd then

14 max_rwd = RCRIME

15 max_path = path

16 break

17 Increment num_steps

18 st ← st+1

19 if max_rwd � 0.0 then

20 b ← avд_rwd

num_success or 1
21 for < st ,a > in path do

22 Update θ with д ∝
23 �θ

∑
t loдπ (a = rt |st ;θ ) (Rp−(t−1) − b)

24 Increment num_success

25 avд_rwd ← avд_rwd +max_rwd

policy pre-training is +1, so our final gradient when updating the policy is equal to:

�θ J (θ ) =
∑

t

∑

aϵA

π (a |st ;θ )�θ loдπ (a |st ;θ )

≈ �θ

∑

t

loдπ (a = at |st ;θ ),

where at is the corresponding action taken at time t along the path.

Retraining with Rewards. After pre-training, the agent retrains to avoid crime-filled areas. We
run the model T times for every episode. Due to the stochastic nature of the policy, all T paths
found by the agent will likely exhibit some variation. While the pre-training limits the agent’s
exploration, the stochastic policy reduces this by allowing the agent to generate a variety of paths
to choose from to reward, thus finding a balance and not relying entirely on exploitation. For
each of the successful paths generated, we look at the rewards calculated along the path. When
updating the policy, we only consider the path with the highest rewards, since a higher reward
indicates a more optimal path, and we want future queries to lead to similar paths. The model does
not update for the other successful and non-successful paths, as updates with negative rewards
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generated worse results and we do not want to encourage the model to recreate less optimal paths.
Algorithm 1 illustrates the training procedure.

Instead of immediately updating the policy with the rewards for the best path, we use a baseline
value b, such as the one used in Reference [30]. The baseline we use is a running average of the
current rewards in the current epoch, using the rewards from the most successful path in each
episode. With the baseline in place, the most successful path from each episode will be rewarded
only if its rewards are greater than the baseline.
In addition to using a baseline value, we also do not reward each state-action pair equally. In-

stead, each is rewarded for its actual value in creating the path. At each timestep t , the current
action is rewarded with only the remaining path in mind. Any information coming from previous
edges along the path is not included in the calculation of the reward. The final gradient is shown
below:

�θ J (θ ) = �θ

∑

t

loдπ (a = rt |st ;θ ) (Rp−(t−1) − b)

In terms of ourmodel’s convergence properties, our usage of REINFORCE allows us to determine
that after training, the model should converge to a local optimum [26]. If it is simple Q-learning,
thenwe can use the Bellman equation and dynamic programming to obtain the optimal results [24].
However, here we are considering deep RL where the state is continuous and hidden, and there
are no theoretical results on optimality to date. For our model, we cease training once the rewards
obtained on the validation set stop increasing for multiple epochs so that our model does not
overfit to the training data. We discuss the number of training samples and epochs for our model
in Section 4.1.

Testing. For all the evaluations, we use beam search to create our paths with a beam size of 5.
The policy runs several times for every current path in the beam, and these paths extend into
several new paths. Paths that remain in the beam are those that are highly favored by the policy.
Once five paths have successfully reached the target, or the step limit is reached, the path with
the highest local average distance from crimes, as described in Section 4, is chosen as the final
path. The path created will occasionally contain loops leading back to an intermediate node along
the path due to the agent’s stochastic nature. Post-processing removes these external loops and
returns the resulting path. Algorithm 2 illustrates the testing procedure.

4 EXPERIMENTS

4.1 Dataset

Though our baseline utilized public crime information for its safe routing, we did not have access to
SafePath’s dataset and thus created our own for our experiments.1 Map information was collected
from OpenStreetMap, a free collaborative world map [16]. We chose to export map information
for the downtown areas of Boston, New York, and San Francisco. This is due to the fact that many
tourists visit these areas, and as they are urban centers, there are typically multiple viable paths
between any two points. The resulting graphs for the three cities were unequal in size, and as a
result, San Francisco was trained with 2,000 samples (episodes), Boston with 3,000 samples, and
New York (the largest) was trained with 4,000 samples. All three models trained for 60 epochs.
Hyperparameter tuning was used to determine the value of κ in the reward function. The neural
network parameters were updated using Adam Optimizer [12]. We achieved the best results with
a learning rate of 0.0005. The model layer dimensions were 256 for the input, 512 and 1,024 for
the hidden layers, and eight action choices in the output layer. We chose five as our value for T

1Source code and dataset will be available: https://github.com/sharonlevy/SafeRoute.
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ALGORITHM 2: SafeRoute algorithm for testing

1 for episode ← 1 to N do

2 Initialize state vector st ← s0
3 Initialize environment et ← e0
4 Initialize probability pt ← 1.0

5 Initialize current paths curr_paths ← (st , et ,pt )

6 Initialize successful paths success_paths ← ∅
7 Initialize episode length num_steps ← 0

8 Initialize new paths new_paths ← ∅
9 while num_steps < max_len and |success_paths | � 5 do

10 new_paths ← ∅
11 for st , et ,pt in curr_paths do
12 for i ← 1 to 5 do

13 Randomly sample action a ∼ π (a |st ) with probability p

14 Copy st , et to sc , ec and take action a in new environment

15 pc ← pt ∗ p
16 if success then
17 Add sc , ec ,pc to success_paths

18 else

19 Add sc , ec ,pc to new_paths

20 st ← st+1

21 while |new_paths | > 5 − |success f ul_paths | do
22 Remove < st , et ,pc > from new_paths with lowest pc

23 Increment num_steps

24 curr_paths ← new_paths

25 if |success f ul_paths | > 0 then

26 Choose path from success f ul_paths with greatest local average distance from crimes

27 Post-process and return path

in the training algorithm in order to balance the speed of retraining versus the diversity of the
generated paths. A beam size of five was used in the testing algorithm. We collect crime data
from Spotcrime, which shows recent crime incident information with details such as geographic
coordinates and type of crime [22]. This source only allows us to retrieve information from the past
year. However, utilizing recent crimes from this time range allows us to obtain a sizable amount
of data that allows us to train the model for long-lasting crime trends. Using only very recent
crimes introduces sparsity during training and does not allow the model to learn general trends.
Types of crimes are treated equally. We previously experimented with different severity levels
and concluded that it is not a feasible addition to our model since the many different types of
crimes introduced too much sparsity during training. For SafeRoute, we chose to use the crimes
of shooting, assault, and robbery, as they are crimes related to street harassment and assault.
A study done by Reference [28] found that walking trips in the U.S. are 0.7 miles on average

and with a median of 0.5 miles. Therefore, we test our model on paths near these lengths. The
model trains on start and end points that are a 5-hop distance away from each other in the graph.
These points represent initial and final points that can be reached in five decisions, though the
actual length may vary depending on the city’s grid and chosen path. When doing experiments,
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we randomly sample nodes in the graph and test on 5-hop and 10-hop paths. We chose to test
on these numbers of hops because they resulted in paths ranging from 0.20–1.0 miles on average
when tested using Dijkstra’s shortest path algorithm. Therefore, we cover the spectrum of most
walking distances. However, because we are prioritizing both distance and safety, our generated
paths are usually longer than their shortest path distance.

4.2 Evaluation Settings

We evaluate our model in several experiments. The quality of the paths is measured in three dif-
ferent tests: average distance from crimes (local), average distance from crimes (global), and path
length. These are all measured in terms of miles.

Local Average. The local average distance from crimes only considers crimes near the agent as it
traverses the path and is calculated similarly to the agent’s rewards:

AvдCrime (local ) =
⎧⎪⎨
⎪
⎩

∑n
i=1

∑m
j=1 distance (xi ,ci j )∑n
i=1 number (ci )

, if c � ∅
AvдMinCrime, otherwise,

where n is the number of edges along the path, m is the number of crimes within the radius at
each edge, x is the list of edge midpoints along the path, and c is the list of crimes in each radius.
If a path happens to have no crimes within its radius, then it uses the average minimum distance
from crimes and is consistent with our safety-first approach—highly valuing edges with no crimes
around them.

Global Average. The global average distance from crimes experiment is equivalent to the local
test but considers all crimes at each edge along the path. This is seen below:

AvдCrime (дlobal ) =

∑n
i=1

∑m
j=1 distance (xi , c j )

n
,

wherem is the list of all crimes in the city, and c is the list of crimes in the city.

Path Length.We sum up the edge lengths along a path in order to determine the final path length:

Lenдth =
n∑

i=1

lenдth(n)

We evaluate SafeRoute against the baselines on the different metrics. We selected these evalu-
ations based on what we believe to be easily explainable criteria that are likely to be valued by
humans trying to navigate a new city safely. Though we propose the metrics of both local average
and global average distance from crimes, we value the local average distance metric the most. This
metric calculates the average distance to a set of crimes, constrained to the crimes within a cer-
tain distance from the edges traversed by the path. It is very similar to the reward function used
by the RL agent and, therefore, provides a measure of how well the agent learned the given task.
Furthermore, we believe this metric to be a good approximation of the overall intuitive safety of
a path, which is why we developed our model to train on it. By keeping a high average distance
from local crimes, we can measure how well the agent learns to avoid certain unsafe streets and
even navigate within the more crime-filled areas of the city. As an additional metric, we also ex-
amine the global average distance along our paths as it considers the entire crime list in its score
as opposed to the local average distance. However, this metric is less significant when traversing
a path. The global average distance captures information from the whole city, and users would
likely not care about crime hotspots miles away from their paths.
We compare our model against two baselines: SafePath and Dijkstra’s algorithm. SafePath cre-

ates safe paths for users by producing non-dominated paths when considering both safety and
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Table 1. Results for the Average Distance from Crimes (Local), Average Distance from Crimes (Global),

and Length Experiments on 5-Hop and 10-Hop Test Datasets

5-hops 10-hops
City Model Local Global Length Local Global Length
Boston Dijkstra 0.0554 0.8620 0.2023 0.0484 0.8479 0.4200

SafePath(Median) 0.0566 0.8648 0.2044 0.0498 0.8639 0.4372
SafePath(Safest) 0.0568 0.8651 0.2050 0.04817 0.8768 0.4619
SafeRoute 0.0630 0.8627 0.2361 0.0571 0.8510 0.4903

San Francisco Dijkstra 0.0882 0.9268 0.4704 0.0964 0.8966 1.0121
SafePath(Median) 0.0934 0.9423 0.4821 0.1046 0.9344 1.1063
SafePath(Safest) 0.0937 0.9489 0.5001 0.1084 0.9650 1.2402
SafeRoute 0.0990 0.9880 0.5468 0.1036 0.9611 1.1659

New York Dijkstra 0.1344 1.1978 0.4222 0.1016 1.1842 0.7907
SafePath(Median) 0.1341 1.2125 0.4515 0.0987 1.2267 0.8748
SafePath(Safest) 0.1344 1.2242 0.4935 0.0978 1.2537 0.9731
SafeRoute 0.1454 1.2004 0.47267 0.1179 1.1992 0.8915

Distance is calculated in terms of miles. In our evaluation, larger values for the local and global metrics are better while

smaller values for the length are favorable.

distance. When generating safe paths, it assigns streets a risk factor determined by a city’s crime
density map. This approach outputs multiple paths on a varying scale of safety and distance using
Dijkstra’s algorithm. SafePath represents paths on a graph by visualizing risk versus length. In
order to generate the paths in between, the algorithm re-weights streets using the gradient of the
line between two paths. The final paths appear as the lower convex hull on the risk vs. length
graph. For our evaluation, we compare against SafePath’s safest paths and the median paths that
it outputs, meaning that these paths balance safety and distance. We use Dijkstra’s algorithm with
distance as the edge weights for comparison against shortest paths, as is done in SafePath.
In addition to the general model we describe in Section 3, we also conduct two additional ex-

periments. The first compares the Boston SafeRoute model with our chosen crime distance radius
(length of the current edge) against models using half the radius and double the radius. The second
experiment trains a SafeRoute model that considers time. The model is trained in Boston with
5-hops. This model trains for daytime and nighttime paths. The model has the same state input as
that in the general model. However, we concatenate a time vector, which relates to either daytime
or nighttime. We then train the model for both scenarios with the same training set. When
rewarding the paths, we only consider crimes that occur within the same time frame: daytime or
nighttime.

4.3 Results

Table 1 shows a numerical comparison between the experimental results of SafeRoute and the
baselines. It is evident by how different the distances are that each city has a different structure
and distribution of crimes. However, even with these variations, SafeRoute can perform well in
each city with the same rewards function. Comparing the local average crime distances between
the three cities for 5-hop paths shows the numbers are much lower for Boston, implying that it is
harder to navigate away from crime in this city. When analyzing the crime density per city, this
shows to be accurate as Boston had the highest crime density with San Francisco following closely
behind. Meanwhile, New York had a density of about half of Boston. The crime distance metrics
in Table 1 follow the same pattern, with Boston having the shortest distances from crimes and
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Table 2. Percent Improvement in Results Over the State-of-the-Art Model (SafePath) in Safest Mode

5-hops 10-hops
City Local(%) Global(%) Length(%) Local(%) Global(%) Length(%)
Boston 10.4 − 0.3 − 20.9 16.2 − 0.8 − 12.4
San Francisco 4.5 4.1 − 7.6 − 6.6 0.3 5.3
New York 6.9 − 2.1 2.2 17.1 − 4.7 6.5

Average 7.3 0.6 − 8.8 8.8 − 2.3 − 0.4
Standard Deviation 2.7 2.6 9.9 11.3 2.2 9.4

Models are evaluated on local average, global average, and path length metrics. Three models were trained for each

city and results in the table correspond to the average results for each.

Table 3. Comparison of Boston SafeRoute Model with Crime Radius Equal to

Edge Length vs. Other SafeRoute Models with Half and Double Radius Lengths

5-hops 10-hops
Radius Length Local Global Length Local Global Length
Normal 0.0630 0.8627 0.2361 0.0571 0.8510 0.4903

Half 0.0567 0.8641 0.2397 0.0555 0.8723 0.5960
Double 0.0583 0.8612 0.2422 0.0570 0.8683 0.5026

Distance is calculated in terms of miles.

New York with the highest. However, even with this entailment, SafeRoute can navigate further
from the crime spots than the baselines. When traversing longer distances at a 10-hop radius, it is
noticeable that the local average crime distance decreases by about the same factor for Boston and
San Francisco, and by a larger one for New York. This implies that traveling long distances in New
York City requires one to go closer to crime spots so that length is not compromised significantly.
Nonetheless, SafeRoute finds paths that are further away from local crimes on average for this city.
In order to decrease variance in our results, we create three models for each city and average the

results for each. We also compute the average and standard deviation of the nine results for each
metric. Table 2 shows SafeRoute’s percent increase/decrease when compared to SafePath’s safest
routes. Because our agent receives rewards based on its local average distance from crimes, it is no
surprise that our model surpasses SafePath by a large percentage. It is also worth noting that while
our model increases path lengths for most experiments, as is expected, there were some test sets in
which our average length was shorter than the SafePath while still excelling in some experiments.
When comparing results for 5-hop and 10-hop paths, it is evident that SafeRoute has better results
for the shorter paths due to the smaller search space and the lower likelihood that the agent will
take a wrong action before it reaches the goal. This is also clear through the standard deviation
results, where there is much less variation in the local average results for 5-hops than 10-hops.
It is expected that we do not have shorter paths than Dijkstra since we are co-optimizing two

criteria. Nevertheless, we demonstrate that it is necessary to compromise length to ensure safety
along a path, as confirmed in Table 2. The overall results of the experiments imply that our SafeR-
oute model has learned to successfully avoid dense crime areas on a map by creating paths that
are further from local crimes on average and can find a balance between distance and safety.
We show the results of our crime radius length experiments in Table 3. Given these results, we

can validate our chosen radius length as the most optimal. Using half the chosen radius may lead
to very few crimes being evaluated throughout the path while training. A large radius focuses less
on local crime hotspots and moves further away from the objective of our model.
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Fig. 2. An example of paths generated by a time-based SafeRoutemodel. The left image shows a path learned

for the daytime and the right image’s path is for nighttime.

Table 4. Time Complexity Comparisons

of SafeRoute, SafePath, and Dijkstra

at Test Time

Models Time Complexity
Dijkstra O (V 2)
SafePath O (S (E +VloдV )
SafeRoute O (V )

V corresponds to the number of nodes in the

graph, S is the number of paths generated, and

E corresponds to the edges in the graph.

For our time-based SafeRoute model, we provide a sample of our results in Figure 2. It is clear
that the left image, which shows a path constructed for the daytime, avoids the small cluster of
crimes that appear onWashington St. However, a distance-only based path would lead the user on
this street as it takes the user on a shorter path. The right image, which represents a nighttime-
based path, takes this shorter path as there are only scattered crimes and no local clusters of crimes
to avoid.
In addition to the above evaluations, we also compare the time complexities of SafeRoute,

SafePath, and Dijkstra when creating paths. These can be seen in Table 4. It is clear that at test
time, SafeRoute generates paths faster than the two baseline models.
We also show a sample result from SafeRoute and our baseline on a map of Boston in Figure 3.

While, initially, the two go along the same path, SafeRoute stays in a mostly crime-free area for
the rest of the path and, therefore, maps the user away from crimes. Meanwhile, SafePath routes
in another direction and ends up closer to crime points instead.

4.4 Discussion

As can be seen in Table 1, SafePath evaluation results do not significantly change when attempting
to create a safe route vs. a short route. SafePath creates a smooth crime density map in order to
utilize Dijkstra’s algorithm. The crime density map is created using a Gaussian kernel density
estimation (KDE) [19]. The density map used by SafePath for our San Francisco dataset is shown
in Figure 4. It can be seen that the density map has one major peak of crime intensity and does not
capture the local variations in crime on the map. Due to the smoothing of the density map, small
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Fig. 3. An example of paths generated by SafeRoute and the state-of-the-art (SafePath) in its safest mode.

Fig. 4. Crime density map of San Francisco with the black dots representing crimes. The x-axis and y-axis

represent the longitude and latitude coordinates, respectively.

clusters of crimes go seemingly unnoticed and are visualized as similar to single points of crime, as
seen in Figure 4 at (−0.035, 0.014). In addition, most edges in the same area will appear to have very
similar risk weights. These weights only have significant changes when traversing long distances.
As a result, when using Dijkstra’s to create risk-free paths for a short distance, as to SafePath,
the output will most likely be the one with the fewest hops and longer paths will be overlooked
by this algorithm. It is also apparent that the differences between SafePath’s safest and median
modes are minimal. When comparing the results for the local average experiment in Table 1, the
resulting values are very close. Meanwhile, SafeRoute is shown to have a significant increase over
the two in its local average metric. This reveals that SafePath’s algorithm does not do very well in
compromising its length for a safer path. In contrast, SafeRoute is inherently local and puts a high
value on avoiding local crime spots. This is done using a non-linear reward system. By rewarding
our agent based on local crimes, we train it to move toward safer streets that are nearby. With this
reward system in place, it is evident that SafeRoute will generate paths co-optimized for safety and
distance. Because SafeRoute co-optimizes for both parameters, some of our experiments revealed
paths that were not longer than those chosen by SafePath in its safest mode.
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Fig. 5. Example of looping in a path generated by our model. The agent makes two wrong turns along the

path in its initial steps.

As mentioned in Section 3, some paths generated by SafeRoute will contain cycles. These deci-
sions will take the agent on a wrong turn, but eventually, lead back to an intermediate node along
the path and continue to the destination. To handle this, we post-process our paths to remove
external loops and return the resulting path. We do not allow the agent to take the same action
in a specific state twice to prevent future cycles. Without this, the agent would end up in an end-
less cycle between two nodes. An example of a looping path before post-processing can be seen
in Figure 5. When analyzing the path, we see the agent makes a wrong turn on its first step and
goes North instead of West toward the destination. This occurs again shortly after. However, after
the initial steps, the agent is able to reach the goal in an optimal path directly. To better under-
stand this, we examined each step along the path. We found that the agent had high probabilities
of going North initially, which decreased as the steps progressed toward the goal and switched
to maximizing probabilities for the correct actions. One explanation for this is that not enough
training samples crossed the initial area of the path. As a result, the agent maximized probabilities
for the few directions it trained. A solution to this is increasing the size of our training sets and
diversifying the start and end locations. Another reason for these loops is that initial steps for the
agent are harder to decide since it is further away from the goal. This seems to be a plausible expla-
nation because the percentage of loops in paths increased for our 10-hop datasets. However, since
the 10-hop datasets also have longer paths, there is more room for error and making wrong turns.
Several extensions and studies are possible for SafeRoute. In the future, we plan to optimize

SafeRoute further to enable longer paths and larger maps. In addition, we will study the portability
of themodel across urban environments. As discussed in Section 2, there has beenmuch research in
visual navigation. Therefore, another extensionwe plan for is to augment our agentwith additional
information to inform its decision, namely Google Street View images of the neighborhood. By
combining multiple sources of information, we hope to boost the real-life relevance of our model
further. Another exciting direction would be to harness human feedback to the generated paths in
our evaluation of the quality of the paths. We hope to validate the results of our work and provide
the generated feedback to an Inverse-Reinforcement learning framework to determine differences
between our reward structure and the inferred one.

5 CONCLUSION

In this project, we developed and tested a deep RL model that aims to prevent street harassment
by routing users away from local crime areas. We showed that an agent could learn to route users
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around high-density crime areas without strict supervision and can do so based on external data
not contained within the graph. Our model can produce high-quality paths between two nodes
in the graph that co-optimize to avoid crime areas without unreasonably sacrificing short travel
distances and surpass our baselines in evaluation. With personal safety as a continual issue in
people’s lives, we hope SafeRoute can be a useful step in crime avoidance and helping users reach
their destinations safely.
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