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Abstract—A fundamental question in multihop wireless network protocol design is how to partition the network’s transport capacity

among contending flows. A classically “fair” allocation leads to poor throughput performance for all flows because connections that

traverse a large number of hops (i.e., long connections) consume a disproportionate share of resources. However, naı̈vely biasing

against longer connections can lead to poor network utilization, because a significantly high fraction of total connections are long in

large networks with spatially uniform traffic. While proportional fair allocation provides a significant improvement, we show here that

there is a much richer space of resource allocation strategies for introducing a controlled bias against resource-intensive long

connections in order to significantly improve the performance of shorter connections. Specifically, mixing strongly biased allocations

with fairer allocations leads to efficient network utilization as well as a superior trade-off between flow throughput and fairness. We

present an analytical model that offers insight into the impact of a particular resource allocation strategy on network performance,

taking into account finite network size and spatial traffic patterns. We point to protocol design options to implement our resource

allocation strategies by invoking the connection with the well-studied network utility maximization framework. Our simulation evaluation

serves to verify the analytical design prescriptions.

Index Terms—Resource allocation, multihop wireless networks, proportional fairness, resource biasing, network utility maximization.
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1 INTRODUCTION

IN this paper, we study resource sharing strategies for

partitioning the transport capacity of static multihop

wireless networks. The throughput performance for these
networks is determined by how the transport capacity is

divided up among competing flows. Consider a network of

N identical nodes with fixed link rates and spatially uniform

traffic, in which each node chooses a destination uniformly

at random from among the other nodes. For such a network,

Gupta and Kumar [1] showed that the achievable per-flow

throughput diminishes approximately as Oð 1ffiffiffi
N
p Þ. Intuitively,

this negative scalability result follows from the fact that for a
network deployment area A, the total transport capacity

only increases as Oð
ffiffiffiffiffiffiffiffi
AN
p

Þ, whereas the number of hops to

the destination and hence the amount of network resources

required per-connection scales up as Oð
ffiffiffiffiffi
N
p
Þ. This per-flow

throughput analysis implicitly assumes that the resource

allocation to each connection is throughput fair across the

network. Connections that traverse a larger number of hops

(longer connections) therefore consume significantly more
network resources than those traversing fewer hops (shorter

connections) to achieve the same end-to-end throughput.
A natural question that arises from the preceding observa-

tion is the following: what if we sidestep the assumption of
throughput-fair allocation by intelligently biasing network
resource allocation against resource-intensive longer connec-
tions? Shorter connections could then achieve a significantly
higher throughput at the cost of a controlled performance
degradation for the longer connections. In this paper, we
introduce a rich class of resource allocation strategies that
embody this design philosophy. Our goal is to provide the
network designer with a flexible means of trading off
throughput performance seen by long and short connections
in a manner consistent with network design goals.

Resource sharing strategies from prior literature that fall
within our framework are proportional fairness [2], and the
more general ðp; �Þ-proportional fairness [3]. However, we
show that it is possible to design the resource allocation
strategy to choose from among a much larger class of flow
throughput profiles (i.e., flow throughput versus the
number of hops the flow traverses) while maintaining
efficient network utilization. For example, it is possible to
significantly improve the performance of shorter connec-
tions beyond that attained by proportional fairness, while
minimally degrading the performance of longer connec-
tions. Alternatively, we can improve throughput for both
short and long connections relative to proportional fairness,
at the expense of slightly lower throughput for flows
traversing a moderate number of hops.

While it is intuitively clear that taking away a small
amount of resources from long connections can significantly
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improve performance for short connections, naı̈vely biasing
against long connections can lead to poor performance. In a
large network with spatially uniform traffic, a large fraction
of total connections are long, so that there are not enough
short connections to take advantage of the transport
capacity that is released if we strongly bias against long
connections. We draw upon this key observation to propose
a new class of resource allocation strategies called mixed-bias
strategies, in which a fraction of the total available network
resource is allocated via an allocation strategy that is
strongly biased against long connections, with the remain-
der allocated in an unbiased (e.g., max-min fair) or mildly
biased (e.g., proportional fair) manner. Mixed-bias strate-
gies enable the desired flexibility in shaping throughput
profiles while maintaining efficient network utilization.

Our second contribution is an analytical model that
provides quick estimates of the throughput profile achieved
by a given resource allocation strategy. This model serves as
a tool for exploring the rich design space of mixed-bias
strategies in shaping throughput profiles that are consistent
with network performance goals. The foundation for our
analytical framework is a novel two-scale model for large
multihop wireless networks (see Fig. 1). At the global scale,
the decay of transmit power with distance and the broad-
cast nature of wireless medium (which limits spatial reuse)
necessitate the use of short distance hops. Therefore,
wireless plays a fundamental role only in influencing the
network topology. At this scale, elementary flow calcula-
tions that treat node bandwidth shares (or data transfer
capacity) as bit pipes suffice to analyze the impact of
various resource allocation strategies. For instance, for
throughput-fair scheduling at the nodes, Gupta and
Kumar’s negative scalability results follow from such flow
analysis, as do results for different biased resource alloca-
tion strategies. The effective node data transfer capacities
used in the preceding “wired-equivalent” global scale
calculations are obtained from a detailed analysis of the
wireless medium at the local scale, which takes into account
medium access control (MAC), transceiver capabilities, and
the radio propagation characteristics. While our approach is
based on flow balance at a “typical” node in a large
network, it is also refined to account for the effect of finite
network size and spatial traffic patterns.

We verify the design prescriptions obtained from our
analytical model using simulations of IEEE 802.11-based
multihop networks. These simulations incorporate the
effects of complex node interactions at different layers of
the wireless network stack that are not explicitly modeled in
our analysis. The performance trends from the simulations
demonstrate that the two-scale model, despite its simplicity,
captures the fundamental design trade-offs.

Our third contribution is to show that the throughput

profiles attained via application of mixed-bias resource

allocation can be obtained as solutions to network utility

maximization (NUM) [2] subproblems in the following

idealized setting: each bias corresponds to a different choice

of concave utility function, a fixed fraction of network

resources is allocated to each bias, and for each subproblem,

the shadow price of each bit-pipe in the network is the same

(approximately satisfied for large, heavily loaded networks).

This connection with NUM opens the way to leveraging the

extensive literature on decentralized NUM-based protocols

for implementing the class of resource-biasing strategies

proposed here. While detailed design and investigation of

such protocols are beyond the scope of the present paper, we

point out that such implementations would consider a single

NUM for a given mixed-bias strategy, that there is no need

to enforce fixed fractional resource allocations for each bias,

and that in practice, the link shadow prices and resources

allocated would vary with network topology and spatio-

temporal traffic fluctuations. The utility functions for such

NUMs extend the class of utility functions generally

considered for resource allocation [3].
To summarize, our main contributions are as follows:

. We propose mixed-bias strategies that blend strongly
biased resource allocation with fairer allocation
strategies. We show that mixed-bias strategies
achieve a superior flow throughput profile and
efficient network utilization that cannot be attained
by the individual strategies in the mixture.

. We present a two-scale analytical model that pro-
vides insight into the impact of a particular resource
allocation strategy on network performance, in a
manner that captures the effect of finite network size
and spatial traffic patterns. We present packet-level
simulations for an example application to verify the
performance predictions from our analytical model.

. We show that mixed-bias resource allocation can be
mapped to appropriately defined network utility
maximization problems, which points the way for
future work translating our mixed-bias approach to
implementable network protocols.

The rest of the paper is organized as follows: Section 2
discusses the related work. Section 3 presents our resource
allocation framework and describes mixed-bias allocation
policies. In Section 4, we present an example application of
our resource-biasing framework and present a simulation
evaluation. In Section 5, we establish the connection
between our resource-biasing strategies and a NUM frame-
work, which shows that our resource allocation policies are
amenable to distributed protocol implementations. We
conclude with a summary of our findings in Section 6.

2 RELATED WORK

We first introduced the resource-biasing strategy and the

two-scale model discussed in this paper in a conference

publication [4]. In the present paper, we expand upon [4],

providing more detailed analysis and simulation results,

and making the connection to network utility maximization.
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Fig. 1. Two-scale model for resource allocation over large multihop
wireless networks.



Most prior work on resource allocation in communica-
tion networks is based on a network utility maximization
framework [2]: a user (i.e., flow) i attaining rate xi obtains
utility UðxiÞ, where Uð�Þ is a strictly concave, nondecreas-
ing, continuously differentiable function, and the goal of
resource allocation is to maximize the sum of utilities,
subject to network resource constraints. Consider a network
with a set L of resources or logical links with capacities
R ¼ ðrl; l 2 LÞ, and a set of flows F . The basic NUM
problem formulation for a wired network is as follows [2]:

max
X
i2F

UðxiÞ ð1Þ

subject to

AX � R over X � 0; ð2Þ

where X ¼ ðxi; i 2 F Þ is the vector of user (flow) rates,
A ¼ ðAli; l 2 L; i 2 F ) is a 0� 1 routing matrix where Ali ¼ 1
if flow i uses link l, Ali ¼ 0 otherwise. The above
formulation is a convex optimization problem, given the
concavity of the objective function (1) and the compact
feasible region (2). In addition to convexity, typical
approaches to solving NUM problems identify and exploit
a decomposition structure embedded in the problem to
design decentralized algorithms that converge to the global
optimum. The solution algorithms are cast into network
protocols that can span multiple layers of the network stack.

A utility function can be interpreted as a knob to trade
off the network throughput performance versus fairness
among competing flows. Mo and Walrand [3] propose the
following class of utility functions which have been
commonly considered in the subsequent work on NUM

Uðx; �Þ ¼ ð1� �Þ�1x1�� � 6¼ 1
logðxÞ � ¼ 1;

�
ð3Þ

where x � 0 is flow rate and parameter � > 0 captures the
degree of fairness, where a higher � implies a more concave
UðxÞ, and hence a fairer allocation. Uðx; �Þ maps to sum
throughput maximization for � ! 0, proportional fairness
[2] for � ¼ 1, potential delay minimization [5] for � ¼ 2, and
approaches max-min fairness [6] for � !1.

Following the seminal work of Kelly et al. [2], there has
been extensive research on NUM in the context of resource
allocation problems in wireline networks, and more
recently, wireless networks. Comprehensive surveys of
work on the applications of the NUM framework can be
found in [7], [8], [9]. For multihop wireless networks, Yi and
Shakkottai [10] and Chiang [11] propose congestion control
algorithms based on NUM formulations. More recent
papers [12], [13], [14], [15], [16], [17] consider joint
congestion control and scheduling problem to design
cross-layer resource allocation algorithms using the NUM
framework. Most of these papers basically employ combi-
nations of ideas from distributed wireline congestion
control (e.g., [2] and follow up work), and queue-lengths-
based wireless scheduling or random access MAC (many of
which are inspired from [18] and its extensions).

Because of our interest in shaping throughput profiles,
our initial approach in our conference publication [4] was
different from the NUM framework, in that we explicitly
assumed that the resource allocation for a flow is propor-
tional to a specific decreasing function of the number of

hops traversed by a flow, and then computed the
proportionality constant via flow balance. By connecting
these biasing strategies to the NUM framework in this
paper, we show that the network designer can work with a
much broader class of utility functions than that considered
in the prior work on NUM. In turn, we expect the protocol
design for implementing our resource-biasing strategies
will be able to draw upon the growing literature on NUM-
based resource allocation over multihop wireless networks
[10], [11], [12], [13], [14], [15], [16], [17], [19].

Other relevant prior work includes a discussion of the
trade-off between network capacity and fairness for hetero-
geneous multihop wireless networks [20], which concludes
with advocacy of proportional fairness as a reasonable
compromise between rate efficiency and fairness, and
observes that max-min fairness yields poor performance
because all flows obtain essentially the same rate as the
minimum rate flow. Velayutham et al. [21] present a
realization of proportional fairness based on end-to-end rate
control for a connection based on the number of hops it
traverses. Li et al. [22] present a simple average-based model
to analyze the unbiased resource allocation problem for ad
hoc wireless networks and derive capacity scaling laws for
random as well as spatially localized traffic patterns.

3 RESOURCE ALLOCATION FRAMEWORK

We now introduce our model for the resource allocation
framework. We first discuss the global scale analysis,
which essentially involves flow balance in a wired-
equivalent network whose capacities would be set by a
local scale analysis.

For a uniform traffic model, each node generates a
persistent flow, choosing a destination at random from
among all other nodes. Our framework also accommodates
spatially localized traffic distributions in which the prob-
ability of choosing a destination depends on the number of
hops from the source. The biased resource allocation
problem is to assign bandwidth to each flow as a function
of its resource requirements (e.g., number of hops it
traverses) such that the node data transfer capacity con-
straints are honored. Since it is intractable to identify
bottleneck links for randomized traffic patterns, we apply
an averaged analysis at the global scale to do flow balance
for a “typical” node of the following form:

C �
Xhmax
h¼1

nðhÞcðhÞ; ð4Þ

where C is the available average data transfer capacity or
bandwidth share of a node (in bits per-second), nðhÞ is the
average number of h-hop connections traversing the node,
cðhÞ is the effective data rate assigned to h-hop flows, and
hmax is the maximum number of hops. Note that cðhÞ � s,
where s is the maximum stable data rate of a link. Both C
and s are determined via a detailed local scale analysis of
wireless medium access control and physical layer proper-
ties: s can be considered as the data transfer capacity of a
node’s wireless contention region, whereas C is a node’s
effective, average share of s. An alternative way to interpret
(4) is to multiply both sides by N , the number of nodes in
the network. Then, the equation points to the problem of
partitioning the aggregate one hop capacity of the network
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among competing flows. For an N-node network, hmax ¼
OðNÞ for a linear topology, and hmax ¼ Oð

ffiffiffiffiffi
N
p
Þ for a two-

dimensional grid.
For a uniform traffic model, a typical node is more likely

to see a longer flow since such a flow traverses more hops/
nodes, so that nðhÞ increases with h (the next two sections
show concrete examples for one- and two-dimensional
networks). It, therefore, makes sense to make cðhÞ a
decreasing function of h, in order to ensure that the sum
in (4) does not exceed C even as the network size (and
hence hmax) becomes large. A throughput profile refers to
the dependence of cðhÞ with h. Our goal is to explore the
design space of throughput profiles that are feasible, in
terms of meeting the link balance condition (4).

For simplicity of exposition, we first illustrate our frame-
work with some quick global scale computations for a one-
dimensional network in Section 3.1. We then provide a more
comprehensive analysis for a two-dimensional network
which models the IEEE 802.11 network to be simulated.

3.1 Computations for a One-Dimensional Network

Consider a directed linear network with N nodes (arranged
as a ring to avoid edge effects: see Fig. 2) and C ¼ 1. For
uniform traffic, the probability of a connection initiated by
any given node traversing h hops is pðhÞ ¼ 1

N�1 , h ¼
1; . . . ; N � 1, since any of the other N � 1 nodes in the
network can be chosen with equal probability. On average,
there are NpðhÞ flows traversing h hops each in a network
of N nodes (as each node originates a flow). Therefore, the
expected total number of hops traversed by h hop flows in
the network is given by NpðhÞh. This implies that the
average number of h-hop connections traversing a node is
given by nðhÞ ¼ NpðhÞh

N ¼ hpðhÞ. Thus, flow balance at a
typical node becomes (assuming full utilization)

XN�1

h¼1

hpðhÞcðhÞ ¼ 1: ð5Þ

For a throughput-fair allocation, the bandwidth allocated
to an h-hop connection is independent of h, so that cðhÞ ¼ �.
We show that the preceding throughput profile maps to
max-min fairness in Section 5. Solving (5), we obtain
cðhÞ ¼ � � 2

N . The sum throughput Tsum ¼ N
P

h cðhÞpðhÞ,
summed over all connections, is approximately 2.

Now, consider the case when the bandwidth assigned to
a connection is inversely proportional to the number of
hops it traverses; i.e., cðhÞ ¼ �

h . Here, � denotes the
maximum allowed source application data rate (in bits
per-second). We show that this allocation approximates
proportional fairness in Section 5. Plugging this into (5), we
obtain that � � 1, so that cðhÞ � 1

h . The sum throughput
Tsum � logN . Thus, we have significantly improved both
the sum throughput and the performance of shorter
connections, with only a factor of two loss in the throughput

obtained by the longest connections. One can show using
typical link flow analysis that the throughput of a h-hop
connection is approximately 1

h , with the sum throughput of
logN , and � ¼ Oð1Þ. Comparing with the max-min fair
allocation, we realize that biasing against the long connec-
tions via proportional fairness results in a win-win strategy:
it leads to far better performance for the shorter connec-
tions, while reducing the throughput attained by the long
connections only by roughly a factor of two. The cumulative
effect of this is the improvement of the total throughput by
a factor of logN

2 compared to the max-min fair allocation.

3.1.1 The Pitfalls of Naı̈ve Biasing

Given the improved performance trade-off offered by
proportional fairness, it is natural to ask if we can get still
larger improvements by biasing even more severely against
the long connections. Consider a more severely biased
allocation cðhÞ ¼ �

h2 . Substituting into (5), it can be shown
that there is indeed a gain in sum throughput, but we require
that � ¼ Oð N

logðNÞÞ. That is, the maximum flow throughput
must scale up with network size, which is clearly not
compatible with the finite capacity of one. Basically, there
are not enough short flows to take advantage of the transport
capacity released by such a strong bias. If we now impose the
constraint that � cannot scale up with N , we find (details are
provided for a two-dimensional model later) that the
network is poorly utilized.

3.1.2 The Promise of Mixed Biasing

The problem with the preceding biasing strategy was that
the short connections would have to send at too high a rate
(more than the maximum stable link rate s) to take advantage
of the bias. However, if we only allocate a small fraction of
the available capacity to this biasing strategy, then we can
eliminate this problem. For example, consider a mixed-bias
strategy of the form cðhÞ ¼ �1 þ �2

h2 ; this mixes max-min
fairness with a bias stronger than proportional fairness. Let
us assume that we use a proportion �1 of the node data
transfer capacity to implement max-min fairness, and a
proportion �2 ¼ 1� �1 to implement the stronger bias such
that flow balance decomposes into two separate equations:

XN�1

h¼1

hpðhÞ�1 ¼ �1; and
XN�1

h¼1

hpðhÞ�2

h2
¼ �2:

Now, by choosing �2 to scale down with N , we can prevent
�2 from scaling up with N . Specifically, we can set
�2 ¼ a logN

N , which will result in �2 � a, which no longer
scales up with N . The resulting throughput profile cðhÞ is a
convex combination of the throughput profiles from the two
different strategies

cðhÞ � a

h2
þ 1� a logN

N

� �
2

N
: ð6Þ

Here, we constrain a � s�2=N
1�2 logðNÞ=N2 so that the maximum

throughput does not exceed the stable link rate s. We note
that (6) provides a very different throughput profile than
either max-min fairness or proportional fairness. In parti-
cular, the throughput seen by long connections is almost as
good as that of max-min fairness (and hence is a factor of
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two better than that obtained from proportional fairness),

while the throughput seen by short connections does not

scale down as a function of N (and hence is better than max-

min fairness). Fig. 3 illustrates example throughput profiles

for a 50-node linear network with link data rate s ¼ 2 and

node bandwidth share C ¼ 1. In short, mixed-bias strategies

open up a large design space not covered by existing

resource allocation strategies. We shall explore this in more

detail in our discussion of two-dimensional networks.

3.2 Two-Dimensional Networks

We now consider two-dimensional N node regular grid
topology networks where the internode distance is such
that direct communication is only possible between
immediate neighbors on the grid. The hop distance hði;jÞ
between two nodes i and j with coordinates ðxi; yiÞ and
ðxj; yjÞ, respectively, is given by hði;jÞ ¼ jxi � xjj þ jyi � yjj,
which equals the number of hops along the shortest path
between the nodes (see Fig. 4).

We consider a power-law traffic model [23] where the
probability that a node i will communicate with a node j, h
hops away, is given by

pi;j ¼
q

hk
; ð7Þ

where 0 < q < 1. Note that pi;j ¼ pj;i ¼ pðhÞ. Thus, the

probability pHðhÞ that a pair of communicating nodes are

h hops apart is given by

pHðhÞ ¼
mðhÞ

hk
Phmax

r¼1
mðrÞ
rk

; ð8Þ

where mðhÞ is the total possible number of h-hop flows in
the network. For k > 0, this spatial traffic distribution
models a spatially localized traffic pattern with degree of
localization increasing with k. We first consider uniformly
distributed traffic (k ¼ 0) to study the effect of different
resource-biasing policies.

We focus on allocation of the available data transfer
capacity C (in bits per-second) of a typical network node
using link flow analysis to obtain the expected per-
connection throughput. The underlying medium access
control layer (e.g., IEEE 802.11) implements max-min fair
bandwidth allocation among contending nodes. The bias
weight function wðhÞ is defined as wðhÞ ¼ 1

hb
, where the bias

exponent b � 0 determines the degree of bias. Let nðhÞ
denote the average number of h-hop flows passing through
or initiated by a typical network node. We have

C �
Xhmax
h¼1

nðhÞ �
hb
: ð9Þ

Thus, the required � for maximum utilization of the
available capacity is given by � ¼ C=

Phmax
h¼1

nðhÞ
hb

.
We first consider a symmetric, regular grid (i.e., a 2D

torus, as shown in Fig. 5) topology to avoid edge effects,
and focus on how the required � scales with increasing
network size as a function of the traffic model and the bias
weight function. For a symmetric regular grid topology,
pHðhÞ ¼ 1=ðhðk�1ÞPhmax

r¼1
1

rðk�1ÞÞ. This is because the number of
nodes located h hop away from any given node is 4h, which
yields the total possible number of h hop flows as 4Nh. This
is plugged in (8) to obtain pHðhÞ. With the average number
of h hop connections traversing a node given by
nðhÞ ¼ hpHðhÞ, we have from (9)

� ¼ CPhmax
h¼1 hpHðhÞ=hb

¼ C
Phmax

h¼1 1=hðk�1ÞPhmax
h¼1 1=hðkþb�2Þ

: ð10Þ

For uniform traffic distribution (k ¼ 0), we infer that with
unbiased resource allocation (b ¼ 0), � ¼ Oð1=

ffiffiffiffiffi
N
p
Þ; for

proportional fairness (b ¼ 1), we have � ¼ Oð1Þ; and for
b ¼ 2, � ¼ Oð

ffiffiffiffiffi
N
p
Þ. Further calculations show that the

required � grows with the network size N for b > 1.
However, since � cannot exceed the maximum stable data
rate s, this means that after the network size increases to a
certain limit for b > 1, a node cannot fully utilize its fair
share of bandwidth because the stronger bias prevents long
flows from using the leftover capacity from the short flows.
As in the linear network case, we infer that with propor-
tional fair resource allocation, the per-flow throughput will
be higher than the unbiased resource allocation for any N
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since the required � is Oð1Þ. Note that the preceding
analysis also applies to infinite regular grid topologies
where edge effects can be neglected.

3.2.1 Spatially Localized Traffic Distribution

We now consider the effect of spatially localized traffic
(k > 0). From (9) and (10), we find that for k > 3 in pHðhÞ
defined in (8), the per-flow throughput stays constant, i.e.,
Oð1Þ, rather than diminishing with increasing network size
for unbiased resource allocation (b ¼ 0). Even for traffic
distributions with 2 < k � 3, biased resource allocation with
b > 3� k can ensure that per-flow throughput does not
diminish. The observations about spatially localized traffic
patterns and unbiased resource allocation are consistent
with insights from [1], [22].

3.2.2 Finite, Regular Grid Topologies

We now consider finite, regular grid topologies where the
contention at the network edges is less than the core
because there are fewer contending nodes at the edges; also,
with a uniform traffic model where every node randomly
picks a destination among other network nodes, the traffic
volume increases toward the core of the network. Therefore,
the network core acts as a bottleneck for network flows in
most cases. Hence, we focus on the network core to avoid
offsets from the edge effects. We expect that the flow
throughput results obtained from analysis of the network
core are pessimistic estimates of the actual flow through-
puts, especially for smaller networks (e.g., N < 50) where
the edge effect dominates. Based on these observations, we
modify (9) as follows:

C �
Xhmax
h¼1

ncðhÞ
�

hb
; ð11Þ

where 0 < � � s and ncðhÞ denotes the average number of
h-hop flows passing through or initiated by a typical
network-core node. We evaluate ncðhÞ by averaging the
values obtained from Matlab simulations of traffic instances
over the network for 5,000 seed values. Thus, we can
calculate the maximum � that satisfies (11) for a given bias
exponent b. This � value can be used to estimate the average
per-flow throughput T of the network as a function of the
network size, traffic distribution, and the resource alloca-
tion policy as follows:

T ¼
Xhmax
h¼1

pHðhÞ
�

hb
: ð12Þ

3.2.3 Mixed-Bias Resource Allocation Policy

The underlying idea is to allocate a portion of the total
available capacity at a node via a strongly biased policy, and
allocate the rest employing a fairer policy. Assume that, of
the total available node capacity C, we allocate �C via a
resource allocation policy determined by weight function
w1ðhÞ ¼ 1

hb1
, and allocate the remaining bandwidth via

weight function w2ðhÞ ¼ 1
hb2

. We calculate the maximum �1

and �2 (0 < �1; �2 � s) that satisfy the following inequalities:

�C �
Xhmax
h¼1

ncðhÞ
�1

hb1
; ð13Þ

ð1� �ÞC �
Xhmax
h¼1

ncðhÞ
�2

hb2
; �1 þ �2 � s: ð14Þ

The average per-flow throughput in this case is given by

T ¼
Xhmax
h¼1

pHðhÞ
�1

hb1
þ �2

hb2

� �
: ð15Þ

The parameters �, b1, and b2 allow us to span a large design
space of resource allocation strategies, trading off through-
put performance versus fairness. Note that an alternative
formulation to (14) that ensures that any leftover capacity
from the fraction of bandwidth allocated to strongly biased
allocation in (13) is used up by the fairer allocation is given
by C �

Phmax
h¼1 ncðhÞð �1

hb1
þ �2

hb2
Þ, where �1 þ �2 � s. Using this

approach, the choice of parameter � is less critical as �
specifies the highest allowed fraction for the unfair strategy,
and a high � value does not lead to resource under
utilization. In Section 5, we present a NUM formulation
with a constraint based on the same idea. Since our intent is
to first understand the effect of different parameters on the
throughput profiles, we focus on (14) for our evaluations.
We provide insight in to the effect of these parameters in the
next section for an example application of our framework
over IEEE 802.11 multihop networks.

4 APPLICATION TO AN IEEE 802.11 MULTIHOP

NETWORK

We now apply our resource allocation framework to an
IEEE 802.11 multihop network to illustrate how to
determine global-scale parameters from local-scale analysis,
which takes into account physical layer technology and
medium access control. We then employ simulations with
IEEE 802.11b parameters to determine how well the design
prescriptions obtained by our analysis in Section 3 work.

For our local-scale analysis, Bianchi’s saturation through-
put analysis [24] is used to determine the data transfer
capacity s of a contention region in an IEEE 802.11 network.
Based on the observation that the IEEE 802.11 MAC protocol
implements an approximation to max-min fair bandwidth
allocation among contending neighbors [20], [25], a typical
node’s share of single hop capacity can be estimated as
C ¼ s=nc, where nc is the average number of contending
nodes in a contention region at the network core. This value
ofC is now used in (11) in the global-scale analysis to estimate
�. This is then plugged into (12) to obtain the average per-
flow throughput. Fig. 6 illustrates the predicted average per-
flow throughput for an example mixed-bias allocation with
b1 ¼ 5, b2 ¼ 1, (proportional fairness) and � ¼ 0:2, for the
individual allocation policies in the mixture and also for max-
min fair allocation. We observe that the mixed-bias allocation
has a higher average flow throughput as compared to
proportional fair and max-min fair allocations. Evaluation
for different � values shows that increasing � to a higher
value emphasizes strong bias whereas decreasing � to a
smaller value such as 0.2 sways the throughput more toward
the fairer allocation in the mixture.

We now employ simulations to obtain flow throughput
profiles, and to evaluate the benefits of mixed-bias
strategies relative to the individual strategies in the mixture,
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as well as to proportional fairness. We use the QualNet
Network Simulator [26] over regular grid topology net-
works with IEEE 802.11b MAC/PHY, in basic access mode
(RTS-CTS turned off). We present our results with static
routing in order to isolate the effects of routing overhead on
throughput. The results are averaged over 20 different
seeds. Our application model comprises CBR flows of
packet size of 1,000 bytes, with data rates determined
analytically for a given biasing strategy, as in Section 3.2
and enforced using source data rate control. Destinations
are chosen at random based on the uniform traffic model.

While we fix the offered rate based on the analytical model
in order to compare different resource allocation strategies,
as we show in the next section, embedding mixed-bias
resource allocation strategies within a utility function frame-
work can provide the flexibility needed to arrive at
decentralized adaptive implementations that allow nodes
to dynamically tune their flow rates while implementing a
biased resource allocation strategy. This can be used to
alleviate congestion, to exploit spatial reuse opportunities,
and more broadly, to react to specific network topologies and
traffic patterns. In fact, embedding our biasing strategies on a
NUM framework allows us to leverage protocol translations
of jointly optimal cross-layer congestion control and sche-
duling algorithms, rather than restricting ourselves to flow
rate control over a given MAC, as in this evaluation. Our aim
in this section is to illustrate the promise of mixed biasing
strategies even in this restrictive setting.

Fig. 7 illustrates the per-flow throughput performance for
the example mixed-bias allocation considered in Section 3.2
(b1 ¼ 5; b2 ¼ 1; � ¼ 0:2) and compares it with that of the

single-bias policies in the mixture and also max-min fair
allocation. The results are consistent with the analytical
prediction that the mixed-bias allocation provides higher
average flow throughput than max-min fair or proportional
fair allocations. However, the average flow throughput
values are lower, and decay faster with network size, than
the analytical predictions shown in Fig. 6. This is because
flows incur higher packet loss probabilities as they traverse a
larger number of hops in a larger network, which results in
an increase in the amount of wasted network resources.
Another factor causing performance degradation that is not
explicitly modeled in the analysis is the waste of medium
access time due to the interaction between the IEEE 802.11
backoff mechanism and multihop packet forwarding [22].

Fig. 8 presents the scatterplots of individual flow through-
puts as functions of the number of hops for a 144-node
network over all simulation seeds. We consider a mixed-bias
strategy, mixing a strong bias with proportional fairness. The
strategy leads to significantly higher throughput for shorter
connections than proportional fairness, while incurring
virtually no degradation for the longer connections. Other
desirable mixed-bias strategies that, for example, provide
better performance for long connections than proportional
fairness, can be obtained by mixing a strongly biased strategy
with max-min fairness (e.g., Fig. 9a). Note that the strongly
biased strategy shuts out the long connections, and is
therefore not a feasible choice on its own. The choice of the
capacity fraction � and the strength b of the bias are other
parameters at the disposal of the system designer to craft a
desirable throughput profile.
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Fig. 6. Average per-flow throughput for mixed bias with b1 ¼ 5, b2 ¼ 1,
and � ¼ 0:2 from analysis. Fig. 7. Average per-flow throughput for mixed bias with b1 ¼ 5, b2 ¼ 1,

and � ¼ 0:2 from simulations.

Fig. 8. Scatterplots of flow throughputs for a 144-node network for mixed-bias allocations, proportional fairness and severe bias (b ¼ 5).



We now investigate the effect of different values of the
capacity fraction � allocated via high bias. Consider the
mixed-bias allocation with (b1 ¼ 5; b2 ¼ 0Þ. Fig. 10 illustrates
the throughput performance obtained from the simulations
for the mixed-bias policies for � ¼ 0:2; 0:6, and 0.8. The
figure also plots single-bias policies in the mixture and
proportional fair allocation for reference. Figs. 9b and 9c
present the scatterplots of individual flow throughputs as
functions of the number of hops for a 144-node network
over all simulation seeds, for the mixed-bias allocations
with capacity fraction � ¼ 0:6 and 0.8 (see Fig. 9a for
� ¼ 0:2). A comparison between Figs. 9b and 9c illustrates
the poor network utilization with a higher bias and high
capacity fraction �. We see that allocation of 80 percent of
the node capacity via a strong bias (i.e., � ¼ 0:8, b1 ¼ 5)
results in decrease of throughput achieved by long flows as
compared to the case when � ¼ 0:6, but no apparent gain is
observed in the throughput performance of the shorter
flows. This demonstrates inefficient network utilization
with a predominantly higher bias allocation for uniform
traffic distribution. With different choices of capacity
fraction �, it is possible to achieve a range of throughput
profiles depending on the set of constituent biases in the
mixture, the network size, and the traffic distribution.

5 MAPPING TO NETWORK UTILITY MAXIMIZATION

We now demonstrate that our resource-biasing strategies
are consistent with the network utility maximization frame-
work. Consider the convex optimization problem (1)-(2), for
which a unique optimal solution exists [27]. From the
Karush-Kuhn-Tucker conditions, the solution satisfies

U
0 ðxiÞ ¼

X
l:l2i

�l 8i 2 F; ð16Þ

where � ¼ ð�l; l 2 LÞ is a vector of Lagrange multipliers or
shadow prices for the links, fl : l 2 ig denotes the set of
links traversed by flow i, and X in (2) and � satisfy

AX � R; � � 0; and �T ðAX �RÞ ¼ 0: ð17Þ

We now show that the resource allocation strategies
discussed in Section 3 fall within the NUM framework in
an idealized setting. We assume that all bit-pipe capacities
in the global-scale wired equivalent model are approxi-
mately fully utilized: AX � R. We also assume that the
aggregate shadow price for a flow is approximately
proportional to the number of hops (bit-pipes) along its
path, i.e.,

P
l:l2i �l � hi�avg, where �avg ¼

P
l �l=jLj, jLj is the

cardinality of the set of bit-pipes. These assumptions
provide insight into the performance in the core of large,
heavily loaded networks, where we expect the traffic to be
spatiotemporally uniform.

From (16), we have

U
0 ðxiÞ ¼ hi�avg; 8i 2 F: ð18Þ

First, consider the resource-biasing throughput profile
xiðhiÞ ¼ �h�1

i , where � > 0 is calculated via flow balance
as described in Section 3. We now verify our claim that this
throughput profile maps to a proportional fair allocation.
We have hi ¼ �

xi
, for which we find that

UðxiÞ ¼ k log ðxiÞ; ð19Þ

where k ¼ ��avg satisfies (18). This form of utility function
UðxiÞ corresponds to proportional fairness. The extension
for weighted proportional fairness (i.e., the utility function
corresponding to each i 2 F is scaled with a weight wi > 0)
is straightforward.

Next, consider a biased allocation with xiðhiÞ ¼ �h�bi ,
where �; b > 0. Hence, hi ¼ �xi�

1
b. We find that

UðxiÞ ¼ k
x1��
i

1� � ; ð20Þ

where � ¼ 1
b and k ¼ ��c, satisfies (18). Note that (20) is of

the same form as the utility function for ðp; �Þ-proportional
fairness proposed in [3], with � ¼ 1

b .
Note that most prior work considering the class of utility

functions proposed in [3] focus on � � 1, which maps to
proportional fairness (� ¼ 1), delay minimization (� ¼ 2),
and other utility functions with higher throughput fairness,
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Fig. 10. Average per-flow throughput for mixed bias with b1 ¼ 5, b2 ¼ 0,
and � ¼ 0:2; 0:6, and 0.8 from simulations.

Fig. 9. Scatterplots of flow throughputs for a 144-node network for mixed-bias allocation policies (b1 ¼ 5; b2 ¼ 0).



approaching max-min fairness as � !1. These functions
map to our biased throughput profiles with bias exponent
1 > b > 0, with b! 0 tending to max-min fairness:
xiðhiÞ ¼ limb!0 �h

�b
i ¼ �, where the rate � per-flow is

derived via flow balance as in Section 3. On the other
hand, utility functions of the form (20) with 0 < � < 1 map
to strong bias against long connections (b > 1). Recall from
Section 3 that allocating all network resources via such
strongly biased policies can lead to poor network utilization
for large networks, which is what motivated our proposed
mixed-bias strategies. For our uniform traffic idealization,
such mixed-bias allocations result from solving the follow-
ing NUM problems:

max
X
i2F

U1ðxi;1Þ þ U2ðxi;2Þ ð21Þ

subject to

AX1 � �R; ð22Þ

AX2 � ð1� �ÞR; ð23Þ

where U1ð:Þ is the utility function corresponding to the

strongly biased allocation strategy (e.g., (20) with 0 < � < 1),

U2ð:Þ corresponds to a fairer allocation such as max-min

fairness or proportional fairness, � > 0 represents the

fraction of total resources allocated via the strongly biased

allocation, and the flow rate vector X ¼ X1 þX2 (where

X1; X2 are constrained to be nonnegative). For example,

mixing proportional fairness with a higher bias strategy with

bias exponent b ¼ 5 would lead toUðxiÞ ¼ ððxi;1Þ
0:8

0:8 þ logðxi;2ÞÞ.
The total rate for flow i is xi ¼ xi;1 þ xi;2. The form of the

mixed-biasing optimization problem is such that it can be

decomposed into two parallel NUM problems in a straight-

forward manner, one with objective function
P

i2F U1ðxi;1Þ,
under constraints (22), and the second with objective

function
P

i2F U2ðxi;2Þ and constraints (23). Thus, we have

shown that the mixed-bias strategy corresponds to separate

NUMs with a fixed resource partitioning governed by �.
Of course, the problem with the preceding mapping is

that making the “right” choice for � is critical: it must be
chosen such that, at least in our idealized model, full
utilization is assured in (22) across biases, and the aggregate
shadow price of a flow is proportional to the number of
hops. In practice, the network traffic would not be uniform,
there would be edge effects, and it would be difficult to
determine a “right” value of �. Thus, a more practical
formulation is to couple the constraints in the NUM
problems for different biases, so as to ensure full resource
utilization even if the nominal value of � (which could
potentially be based on analysis of our idealized model) is
too large. Specifically, consider the following NUM:

max
X
i2F

U1ðxi;1Þ þ U2ðxi;2Þ ð24Þ

subject to

AX1 � �R; ð25Þ

AðX1 þX2Þ � R: ð26Þ

We assume that the second utility function corresponds to a
strategy such as proportional or max-min fairness which
can fill up all network resources if needed (e.g., even if we
set � ¼ 0). Thus, even if the value of � is too large and the
strongly biased allocation cannot utilize all the network
resources, the constraint (26) coupling the two biases
implies that all network resources will be fully utilized.
Note that, for a given value of �, the coupled NUM (24)-(26)
has a larger feasible set, and hence at least as big a utility, as
the decoupled NUMs (21)-(23).

Now that we have shown a mapping between the
throughput profiles from our resource-biasing strategies
and the NUM framework, the extensive literature on
decentralized, cross-layer algorithms for the NUM problems
(see Section 2) can be leveraged to devise protocols that
implement our resource-biasing strategies. In practice, a
decentralized NUM implementation would allow flexible
resource partitioning (with an upper bound on the propor-
tion of resources allocated via the highly biased strategy)
and also different shadow prices to reflect the actual spatial
distribution of traffic. Detailed investigation of design and
evaluation of such NUM-based protocols is beyond the
scope of this paper, but is an important topic for future work.

6 CONCLUSIONS

The resource-biasing framework presented in this paper
opens up a rich design space for sharing transport capacity
in multihop wireless networks that goes beyond existing
paradigms such as max-min fairness and proportional
fairness by blending strongly biased and fairer allocations
to get superior throughput profiles with high network
utilization. Our two-scale model for multihop wireless
networks yields quick performance estimates for different
biasing strategies, providing a tool that allows system
designers to tune parameters so as to shape throughput
profiles while maintaining network efficiency. For 802.11
networks with fixed link speeds, the global scale, wired-
equivalent model provides predictions of throughput
profiles that match trends obtained by simulation. We have
shown that, for an idealized setting of a network with
uniform link speeds and traffic, mixed-bias resource
allocations are solutions to parallel network utility max-
imization problems, each maximizing a utility function
corresponding to a particular bias, with a fixed fraction of
network resources allocated to each bias. However, we note
that practical implementations should be based on a coupled
NUM in which a fair allocation capable of fully utilizing
network resources is mixed with a highly biased strategy,
setting an upper bound on the fraction of network resources
that can be used by the latter. Decentralized implementa-
tions based on such a NUM can react to spatiotemporal
variations in traffic and network topology. An important
topic for future research, therefore, is to leverage the
extensive research on NUM over wireless multihop net-
works (e.g., see [28], [12] for frameworks for joint congestion
control and scheduling) to devise robust, decentralized
protocols for implementing mixed-bias strategies.
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