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ABSTRACT
Tribal communities have experienced disproportionately high in-
fection and death rates during the COVID-19 pandemic [1, 8, 31].
In this work, we examine COVID-19 case growth in proximity to
significant tribal presence by providing a novel quantification of
human mobility patterns across tribal boundaries and between ur-
ban and rural regions at the geographical resolution of census block
groups. We use New Mexico as a case study due to its severe case
infection rates; however, our methodologies generalize to other
states. Results show that tribal mobility is uniquely high relative to
baseline in counties with significant case counts. Furthermore, mo-
bility patterns in tribal regions correlate more highly than any other
region with case growth patterns in the surrounding county 13–16
days later. Our initial results present a quantification scheme for the
underlying differences in human mobility between tribal/non-tribal
and rural/urban regions with the goal of informing public health
policy that meets the differing needs of these communities.

CCS CONCEPTS
• Networks → Location based services; Mobile networks; •
Human-centered computing → Mobile devices; • Social and
professional topics→ Race and ethnicity; • General and ref-
erence→ Measurement.
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1 INTRODUCTION
From the start of the COVID-19 pandemic in the United States
(US), case counts have shown that the virus impacts Native Amer-
icans and other ethnic minorities much more severely than White
populations [1, 21]. Many tribes responded to the pandemic by
closing tribal borders and imposing strict curfews on tribal lands
in addition to other prevention methods [23]. While recent re-
search has investigated the effectiveness of social COVID-19 pre-
vention methods, including physical distancing, curfews, mask-
ing, shelter-in-place orders, tribal boundary restrictions, and com-
munity testing in tribal and rural communities [8, 23], limited
research has assessed the relationship between human mobility
in urban/rural and tribal/non-tribal regions and COVID-19 case
counts [3]. Given the critical relationship between mobility and
resource access in rural and tribal communities, it is important
to understand the potential effectiveness of mobility restriction
as a means for mitigating a public health crisis. The goal of this
paper is twofold: first, to quantitatively characterize the relation-
ship between urban, rural, and tribal mobility and the growth of
COVID-19 cases; and second, to accomplish this characterization by
analyzing mobility information derived from crowdsourced mobile
devices.

We focus our analysis in New Mexico (NM) due to the state’s
representative blend of tribal and non-tribal communities spread
across rural and urban areas. NM county case infection rates range
from zero cases in some counties to some of the highest case counts
in the nation in others. To our knowledge this is the first analy-
sis that considers tribal, urban, and rural mobility at a resolution
finer than county-level to assess mobile device movement during
COVID-19. Importantly, our methodology generalizes to the greater
US.

Our mobility dataset is collected by Skyhook, an opt-in loca-
tion service company that offers device geo-positioning through
wireless sensing [30]. COVID-19 case data is sourced by the NM
Department of Health public dashboard [26]. We compare mobility
and COVID-19 case growth rate before and after the March 23
stay-at-home (SAH) order for NM [27] against a mobility median
established in January–February.

Our novel approach overlays U.S. Census Bureau rural and urban
labels and tribal boundary files to assign two labels to census block
groups (CBGs) within each county: either urban or rural, and either
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tribal or non-tribal [34, 35]. Our crowdsourced dataset is aggre-
gated at the CBG level, facilitating a more fine-grained analysis
than is currently possible with publicly available mobility datasets
aggregated by county. Our key findings are the following:
• After the SAH order, tribal mobility on average dropped less
than half as far as non-tribal: -6.27 vs. -17.18%, relative to their
respective pre-COVID-19 medians. In two counties with the most
cases, tribal mobility increased more than 4% above baseline, con-
trary to expectations that the SAH order would reduce mobility.
Non-tribal mobility reduced to -5.05% less than its pre-COVID-19
median.

• Rural mobility dropped less than half as far as urban overall:
-8.36% vs. -19.30%; however, within tribal areas the rural drop is
less than a third of urban: -3.54% vs. -12.48%.

• Pearson correlation analysis reveals that tribal mobility consis-
tently correlates more strongly with case growth than non-tribal
mobility in counties with higher case numbers.

Our findings show the need for more granular case reporting to
allow public health interventions that impact mobility to consider
factors such as rurality and tribal jurisdiction.

Privacy Acknowledgement: Our dataset has been collected by
Skyhook with the consent of the individual device users. Privacy of
device users has been ensured by aggregating user data over census
block groups. We base our analysis on this level of aggregation and
do not disaggregate or identify movement of individuals.

2 RELATEDWORK
“Mobility" Interpretations and Datasets:A number of organiza-
tions have published mobility datasets based on device movement,
but the exact metric that defines “mobility” varies [2, 5, 7, 10, 12,
13, 29, 32]. Both Google and SafeGraph identify mobility as the
number of visits within a day to certain types of locations, instead
of a device-centric mobility metric such as distance traveled in a
day [14, 29]. Unacast offers both a social distancing dataset and a
dashboard showing migration patterns of New York City residents
leaving the city as the pandemic grew [32]. Each of these datasets
only represents mobility at the county level and fails to reveal finer
differences that may arise from a division of tribal, rural, and urban
populations. Google’s Community Mobility reports explicitly state
the reports are not intended for characterizing regional differences
such as urban and rural mobility variations.

Mobility andCOVID-19CaseGrowth:Mobility has been shown
to strongly correlate with COVID-19 case growth, and some studies
call for more granular mobility data to help build the science around
mapping human movement to understand how better to prevent
pandemic spread [20, 25]. Device-based mobility tracking has appli-
cations in estimating, predicting, and preventing the propagation of
COVID-19 in communities around the world [15, 19, 24, 28]. A num-
ber of researchers are currently discovering mobility patterns that
lead to increased pandemic spread [22, 28]. Since publicly available
datasets of COVID-19 case counts are most commonly presented
at the county level [9, 26], prior attempts to categorize case data
differences between urban and rural areas rely on county-level
classifications [11, 25, 36] rather than smaller regional differences.

3 DATASETS
Our analysis is based on two datasets, as described below.

Mobile Device Mobility Index: To obtain mobility data we part-
nered with Skyhook, a geo-positioning service provider that logs
anonymized records of users’ mobile device location [30]. Skyhook
collects device locations by providing a software geolocation ser-
vice to third parties distributing commercial applications. Skyhook
estimates the percentage of U.S. residents contributing to their data-
base is typically between 1% and 5% of the population. Users install
a third-party app and may consent to data collection by the third
party and thus by Skyhook. Each time the app makes a new loca-
tion request (prompted by app-specific needs such as advertising
services, geo-fencing triggers, or navigation updates up to once per
second), Skyhook’s location service calculates an updated position
for that device. This service uses GPS, cellular, Wi-Fi, Bluetooth,
and LP-WAN networks, as available, on a variety of personal mobile
devices and is compatible with apps for mobile devices running
Android, Windows, and Android operating systems.

Skyhook aggregates location data over CBGs for each day of
our analysis and includes a unique metric called bounding box
itinerancy: the diagonal of the bounding box around the total area
traveled by any device that appears within the aggregation and
time boundary (i.e., each CBG and day). This metric captures the
maximum distance traveled by a device each day, averaged over
all devices. Personally identifiable information, such as routes or
starting points, is not disclosed.

For each of the 1, 449 CBGs in New Mexico and most of the
161 days between January 1 and June 9, 2020, we have a single
itinerancy average, for a total of 233, 162 data points1. Figure 1a
shows the average daily itinerancy over all CBGs over time.

NewMexico COVID-19 Case Infection Counts: The Center for
Disease Control releases county-level case infection counts to the
public [4] based on daily updates from the NewMexico Department
of Health. These numbers represent cases reported on that day;
unreported cases are not reflected in the data. We examine case
infection counts, not number of deaths, since we seek to understand
how mobility correlates with spread of the disease.

4 ANALYSIS
In this section we characterize the relationship between mobility
within a county and case growth rate for the entire county. We
define “mobility” as used in our study, describe the methodology for
regional categorization of mobility, and demonstrate a grouping of
counties by case severity that allows for concise reporting of results.
We then characterize the relationship between mobility and case
growth rate in two ways: first with coarse time-averages of mobility,
then with finer correlations that demonstrate the high correspon-
dence of mobility through tribal and rural regional categories with
overall case growth rates.

11, 449 × 161 is 233, 289. However, on some days either itinerancy failed to be collected
for devices appearing in some CBGs, or no devices entered that CBG, resulting in 127
fewer data points.
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(a) Raw bounding box itinerancy with a 95% confidence band. (b) Overall mobility with a (vary narrow) 95% confidence band.

Figure 1: Mobility represented by Skyhook’s itinerancy metric and percent change in itinerancy from the pre-COVID-19 median.

4.1 Mobility as Percentage of Itinerancy
We first establish a mobility baseline by taking the median of itin-
erancy; this is the pre-COVID-19 median. This median is calculated
starting on January 5, 2020 to avoid New Year holiday travel, and
extends through February 6. This time range is similar to the range
used in Google’s Community Mobility dataset [13], and ends just
over two weeks before news of the first virus-related deaths in
the U.S. began altering public behavior2. This month of “normal”
behavior allows us to compare how movement patterns changed
as COVID-19 began to affect people’s daily travel decisions.

Since “normal” behavior can vary wildly from place to place and
by day of the week, we construct custom pre-COVID-19 medians
using the same scheme: for each CBG and day in our Skyhook
dataset, the itinerancy value is compared to the median itinerancy
of all similar days of the week between January 5 and February 6.
This matching of days accounts for day-of-week differences and
variations particular to each CBG. Mobility is then taken as the
percent change away from the pre-COVID-19 median itinerancy
value of each day. Figure 1b shows the average mobility for the
itinerancy metric over all CBGs for each day of January 1–June 9,
2020. Note that the date of the stay-at-home (SAH) order, March
23, 2020, is marked on the graph for reference.

We see rough agreement in the itinerancy change with other
public mobility datasets for NM [7, 14]: mobility decreases signifi-
cantly in late March, maintains its lowest rate through late April,
then slowly returns to the pre-COVID-19 median through May
and June. We study these trends in urban, rural, and tribal regional
categories in the remainder of this analysis.

4.2 Regional Categories: Tribal/Non-tribal and
Urban/Rural

We assign two regional category labels to each CBG-day entry:
either U (urban) or R (rural), and either T (tribal) or N (non-tribal).
These categories are then combined to show: tribal urban (TU),
non-tribal urban (NU), tribal rural (TR), and non-tribal rural (NR)
categories.

The U.S. Census Bureau publishes urban/rural assignments to
individual census blocks using Tiger/Line geographical files [35].
To label an entire CBG, we sum the number of individual blocks
within the CBG that are assigned the respective label. If 50% or more
blocks within a CBG are labeled rural, then the entire CBG in our
dataset is labeled rural. Otherwise the CBG is labeled urban. The
effect of this step’s over- and underestimation error on final noise
in the mobility data is difficult to quantify; however, since neither

2Similar results were obtained using baseline end dates of February 16 and March 1.

# CBGs
(% dataset)

Median
device
(#)

% w/
hwys.

Med.
pop.

Median
area (𝑘𝑚2)

Total 1,449 (100%) 624 69% 1241 2
T 113 (8%) 209 88% 1130 123
N 1,336 (92%) 662 67% 1249 2
R 394 (27%) 392 94% 1215 158
U 1,055 (73%) 714 60% 1251 1
TR 84 (6%) 172 85% 1131 205
TU 29 (2%) 345 93% 1195 6
NR 310 (21%) 442 96% 1234 142
NU 1,026 (71%) 729 59% 1253 1

Table 1: Characteristics of CBGs (census block groups) in regional
categories (either Tribal/Non-tribal or Rural/Urban, and in combi-
nation). Columns show from left to right: number of CBGs that ap-
pear in each region (with the corresponding percentage of measure-
ments in the overall dataset); median number of devices that appear
in all CBGs of each regional category; percentage of CBGs in each
region that containmajor highways; median population of CBGs in
each region; and median area of CBGs in each region.

mobility nor COVID-19 case data is available at block resolution,
some assumption must be made to obtain comparative geometries.
Future work to better quantify the noise inherent in this analysis is
discussed at the end of Section 4.

Tribal boundaries are released every year by the U.S. government
and rarely overlap neatly with census boundaries [34]; both census
and county boundaries often shear irregularly through tribal lands.
In our analysis, we label all data points within a CBG as tribal if the
CBG overlaps tribal lands by 50% or more. However, some CBGs
overlap less than 50% with tribal lands but have the majority of
device activity falling within the tribal boundary. The Skyhook
dataset includes the daily average device location by latitude and
longitude of all devices recorded within each CBG each day. If 50%
or more of these locations fall within tribal lands, we label that
CBG tribal as well.

Table 1 shows defining characteristics of the CBGs in each re-
gional category: total number of CBGs in NM and the equivalent
percentage in the dataset; the percentage of CBGs that contain ma-
jor highways [6] (which may add noise to mobility measurements);
the median CBG population drawn from the American Community
Survey 5-year estimate [33]; and the median CBG area. The issue
of highway noise possibly complicating analysis in tribal and rural
areas by contributing pass-through (rather than resident) mobility
of devices is discussed in Section 4.4. There we rely on statistical
power tests to interpret the significance of our final results.
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(a) Rank 1 (most severe) (b) Rank 2

(c) Rank 3 (d) Rank 4 (least severe)

Figure 2: Mobility as percent deviation in itinerancy from the pre-COVID-19 median grouped in counties of different case severity rank for
combined regional categories. The legend in (b) applies to all plots, and the y-axis labels for (a) and (b) are aligned below (c) and (d).

4.3 COVID-19 Cases by County
We next present the concept of severity ranks, which are groupings
of counties with similar case counts and mobility patterns (as is
justified throughout this section). Our goal is to reveal any mobil-
ity differences between regional categories that may correlate to
greater or lesser virus spread relative to population, and to use rank
aggregations to present results for several counties compactly. By
comparing the percentage of each county’s population that experi-
enced confirmed cases as of June 9, 2020, we find that four ranks of
evenly decreasing severity are able to characterize the varying case
growth over all of NM and to demonstrate the regional patterns
shown next. As Section 4.4 further demonstrates, mobility also nat-
urally falls into these groupings. We include the standard deviation
within each rank to demonstrate the consistency of these findings
throughout these rankings. The two counties with more than 1%
of their populations reporting a positive test for a COVID-19 case
as of June 9 (McKinley at 3.8% and San Juan at 1.8%) are assigned
the highest severity rank of 1. The next highest county is Cibola
at 0.62%, so the COVID-19 case percentage cutoff for rank 1 is set
at 0.63%. The remaining three severity ranks are created by evenly
splitting the remaining case percentage at 0.42% and 0.21%.

Figure 2 shows these severity rankings used to group mobility
in each of the combined regional categories. Several possible trends
are immediately obvious in the time after the SAH order was issued:
tribal urban (TU) mobility shows the highest peaks in counties of
severity ranks 1 and 3 even during the lowest dip in March and
April. In rank 2, tribal rural (TR) mobility is the consistently highest
category, and tribal urban (TU) mobility follows non-tribal urban
(NU) mobility with the lowest values. Rank 4 counties show the
most consistency between mobility categories. We further explore
these possible trends by looking first at time averages over key
mobility periods, then at correlations between mobility and case
growth data at a county level.

Table 2 quantifies the overall trends suggested in Figure 2 by
showing the average difference from the pre-COVID-19 median
in mobility in each combined regional category over all days after
the SAH order was issued. The “All regions” row in Table 2 shows
that on average, mobility in each category decreased despite the
return toward normal operation in May and June. Tribal mobility

(T) dropped to -6.27% of its pre-COVID-19 median, whereas non-
tribal (N) dropped to -17.18%. Rural mobility (R) dropped almost as
little as tribal to -8.36%, and urban mobility (U) dropped the most
to -19.30%. These trends are similarly reflected in the combined
categories, with CBGs labeled as both tribal and rural (TR) showing
mobility dropped the least to -3.54%.

The breakdown by case severity ranks in the rows labeled 1
through 4 shows that tribal mobility in counties of rank 1 actually
increased on average over this time to 4.67%, whereas non-tribal re-
mained at -5.04%. Furthermore, TR and TU mobility both increased
to 5.02% and 10.30% whereas NR mobility increased only to 0.49%
and NU remained subdued at -9.46%. In the lower ranks, we see that
tribal mobility typically remained greater than non-tribal mobility
in each rank, except for in rank 4, with greater tribal mobility in
counties with higher severity rankings3. Naturally the choice of end
date will strongly affect these averages; however, when comparing
averages over just the three lowest weeks (April 6–27) or just the
two weeks of return to normalcy (May 24–June 9), we find similar
relationships between regional mobility trends.

The results in Table 2 suggest a detectable correlation between
tribal mobility–both as a whole and in urban and rural categories–
and case growth in counties with a strong tribal presence, despite
the minimal representation of tribal mobility measurements within
the dataset.

Rural mobility is consistently higher than urban mobility for
all time ranges and all severity ranks. It is unclear whether this
is due to the considerable coincidence between rural CBGs and
highways or the fact that rural areas are often characterized by
greater distances from resources and between waypoints [17]. We
discuss this in section 4.4.

4.4 Mobility and case growth correlation
We now examine a Pearson correlation between Skyhook itinerancy
and COVID-19 case growth rate. We follow the method demon-
strated by Freitag et al. [22], who performed a state-level correla-
tion across the U.S. and found that the highest correlation appeared
3Rank 3 proves an exception to this trend, where the only tribal CBGs are inside
Bernalillo county, and three of these four CBGs contain major highways through
Albuquerque. When results from the only tribal CBG without highways is considered,
this claim holds.
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Rank All regions T N R U TR TU NR NU
Avg. Med. St. Dev. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

All -16.33 -19.15 31.27 -6.27 -17.18 -8.36 -19.30 -3.54 -12.48 -9.65 -19.5
1 -1.74 -2.77 42.07 4.67 -5.04 2.98 -7.43 5.02 10.3 0.49 -9.46
2 -14.36 -16.54 29.83 -8.01 -14.98 -8.51 -16.71 -6.3 -20.18 -9.2 -16.63
3 -20.37 -24.59 28.04 3.82 -20.58 0.08 -21.98 0.48 13.82 0.04 -22.07
4 -17.65 -18.86 29.88 -21.86 -17.37 -14.12 -19.54 -22.11 -21.59 -13.33 -19.45

Table 2: Average mobility changes from pre-COVID-19 median by regional category and rank for March 24–June 9, all dates after the stay-at-
home (SAH) order. Median and standard deviation are shown for all regions in each rank to show the range of mobility in each grouping.

when mobility data is lagged by 19 days. This lag time seems rea-
sonable given the following factors: after exposure, symptoms of
the virus typically begin to manifest between 5 and 14 days. The
additional days up to 19 may represent observing symptom develop-
ment, decision time to obtain a test, and waiting for test results. We
perform a correlation with mobility divided into regional categories
to further explore how underlying trends in tribal, rural, or urban
regions may affect case growth in their surrounding counties.

The mobility dataset used by [22] is provided by Descartes Labs
(DL) and shows the daily county-wide median of the maximum
distance in kilometers traveled by devices away from their daily
origin point [7]. Skyhook’s itinerancy metric, in contrast, shows the
diagonal of the bounding box around all movement within a CBG
in a day, on average 4–5 times larger than DL’s mobility metric.

(a) DL correlation (b) SK correlation

Figure 3: Correlations between log10 mobility and growth for
Descartes Labs (DL) and Skyhook (SK) from March 1–June 9. 𝑝-
values show likelihood of a false positive and should be <0.05.

Our case dataset begins January 21 and was obtained from the
NM Department of Health, which sources the data used in [22]. We
calculate the daily change in case counts for each of the 33 counties
in NM and the 140 days in January 21–June 9. Daily case growth
rate is the natural log of the ratio of each day’s case changes to
each previous day’s. As in [22], we average case growth rate with
a 14-day rolling window to smooth weekly trends. Our mobility
dataset is created by applying a 14-day rolling average on raw box
itinerancy in 𝑘𝑚 for each of the 1, 449 CBGs in NM and over the
same date range, then taking the base-10 log of mobility as in [22].

We first recreate the Pearson correlation shown in [22] with the
publicly available DL dataset for NM, overMarch 1–June 9, the dates
available for DLmobility data. Amaximum correlation appears at 17
days of lag with a coefficient of 0.27 (𝑝 < 0.01) (Figure 3a). Repeating
the same process with Skyhook’s itinerancy shows a maximum
correlation of 0.37 (𝑝 < 0.01) at just 13 days (Figure 3b). This
earlier lag time may arise from an important difference between

Overall Rank 1 Rank 2 Rank 3 Rank 4
Cat. Co. l Co. l Co. l Co. l Co. l
All 0.37 13 0.34 12 0.36 23 0.22 8 0.34 11
T 0.41 14 0.38 15 0.38 14 0.36 9 0.37 14
N 0.36 13 0.34 13 0.37 22 0.36 22 0.36 22
R 0.37 12 0.25 8 0.23 4 0.20 5 0.22 8
U 0.36 13 0.35 8 0.34 13 0.34 11 0.34 10
TR 0.42 14 0.40 15 0.28 14 0.35 9 0.38 14
TU 0.38 12 0.40 33 0.40 13 0.32 13 0.36 22
NR 0.37 12 0.24 5 0.21 4 0.19* 5 0.22 8
NU 0.36 13 0.34 8 0.34 13 0.34 9 0.34 10

Table 3: Maximum correlation coefficient (Co.) and corresponding
lag (l) in days betweenmobility and case growth, grouped by county
severity rank and regional categories (Cat.). 𝑝 < 0.01 for all entries
except for those marked with bold ( 0.01 < 𝑝 < 0.05) or an asterisk
(𝑝 > 0.05).

the mobility metrics: greater changes in itinerancy allow greater
variety of maximum distance traveled, so that many max distance
values would map to the same itinerancy value.

We then divide itinerancy measurements into regional categories
by case severity rank, shown in Table 3. We confirm that state-wide,
tribal mobility correlates more strongly to case growth than non-
tribal. Particularly, TR mobility correlates most strongly at 0.42
(p < 0.01). The “Rank” columns show mobility for each region
is correlated only to case growth within counties of that rank.
Tribal mobility maintains a consistent highest correlation with case
growth in each rank, while non-tribal correlation increases slightly
in lesser ranks. Tribal presence in lower-ranked counties is lower
than in higher-ranked counties, but this does not correspond to a
decrease in the correlation between tribal mobility and overall case
growth.

5 DISCUSSION
This analysis suggests that mobility through tribal regions is more
indicative of case growth in the surrounding county than mobility
through non-tribal regions. Furthermore, mobility through tribal
and rural regions uniquely increased after social distancing orders
went into effect. This trend raises the question of the appropriate-
ness of the SAH order for communities in rural and tribal regions. It
is likely that the continued need for basics such as water, medicine,
and groceries during March and April contributed to increased
mobility by reservation residents. Many of these residents already
travel tens of miles for a simple supply run; supply outages would
have increased the need to travel longer distances [16, 18]. Finally,
tribal land residents, many ofwhom live paycheck-to-paycheck [23],
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may not have the option of remaining home from work for even
two weeks; as businesses suspended, schools closed, and typical
child care services were disrupted, households may have needed
to travel further to find work and take children to new day care
arrangements. Moving forward, collaboration between healthcare
officials and tribal leaders will be critical to studying these patterns
further and to adapt preventative measures to meet the mobility
needs of residents of sovereign lands.

Imprecision was necessarily introduced to our analysis by requir-
ing aggregation to protect user privacy. Labeling tribal, urban, and
rural regions in geometries larger than census blocks intrinsically
introduces some amount of error; precise characterization must val-
idate these regional labeling schemes. Additionally, device count is
captured for each day and CBG, the number of users of each device
cannot be guaranteed. Total distance captured by a single device
may represent movement by more than a single person, especially
in tribal and rural communities where device sharing is common.
Nevertheless, any device movement still represents the mobility
of at least one person and corresponds to a greater potential of
exposure to the virus.

Finally, the precise amount of noise introduced from non-local
highway users, especially in tribal and rural areas, is not captured
in this mobility dataset. Highway use increases the daily average
distance traversed, but this type of mobility likely does not con-
tribute to more direct personal contact that could spread COVID-19
in the local region. Nevertheless, our observations reflect that total
mobility detected through rural tribal lands seems to correspond
with an increase in COVID-19 case growth. Currently the only
reliable published case data is for county-level totals and not for
tribal, urban, or rural regions. Our work explores the possibilities
of these limited datasets to delineate recommendations for more
precise yet privacy-preserving data collection.

6 CONCLUSION
Although much work remains for the future, our analysis demon-
strates that aggregated human movement captured by personal
devices reveals different patterns through tribal and non-tribal re-
gions, further delineated between urban and rural lines. Combined
with the unusually devastating surges in COVID-19 case growth
in counties close to tribal areas in NM, this research could reveal
key behaviors captured in personal device mobility data that can
help scientists and officials understand and moderate the spread
of COVID-19 and future outbreaks. Importantly, our analysis of
available information shows a need for consistent case data to be
recorded and made publicly available at a finer regional resolution
than county-level. We hope future work in this direction will enable
public health efforts to better consider the impacts of jurisdictional
and regional mobility.
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