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Abstract—Live video streaming is widespread and a heavy
consumer of Internet bandwidth. As such, it is important to
evaluate the quality of that streaming, particularly over links that
may pose challenges to near-real-time content delivery. In this
paper, we study the performance of Twitch, one of the leading live
streaming platforms, over Geosynchronous Earth Orbit (GEO)
satellite networks; GEO networks are a key technology for
connecting users in challenging environments, yet they suffer
from high latency. To do so, we conduct controlled experiments
that compare Twitch live stream performance on a high-latency
GEO network to that on a low-latency campus network. We
analyze core quality of experience metrics – resolution, frames
per second, rebuffering, and playback delay – to pinpoint how
satellite-induced delays disrupt streaming quality. Our findings
reveal a critical flaw in Twitch’s client scheduling: chunk request
intervals are not calibrated to accommodate GEO network
latency. As a result, playback buffers deplete before the next
video chunk arrives, triggering frequent rebuffering, increased
latency, and a notable deterioration in quality of experience.
By highlighting this gap, our work underscores the urgency
of latency-aware streaming strategies and adaptive scheduling
algorithms. These insights offer actionable guidance for platform
developers, satellite ISPs, and researchers, ultimately paving the
way for more robust, inclusive live stream experiences as the
medium’s popularity and influence continue to climb.

Index Terms—Live Video Streaming, Geosynchronous Satellite
Networks, High-Latency Environments, Adaptive Bitrate Algo-
rithm Evaluation, QoE Measurement

I. INTRODUCTION

Geosynchronous (GEO) satellite networks are a crucial
component of the Internet ecosystem due to their ability to
extend Internet access to challenging connectivity environ-
ments where traditional infrastructure is impractical or costly.
This includes remote and underserved areas around the world,
as well as aircraft and sea vessels. Simultaneously, the live
streaming industry has grown rapidly, driven by platforms
such as Twitch, YouTube Live, and even traditional streaming
services such as Netflix and Prime Video, which have recently
launched live event streaming features [1]. This expansion
reflects a broader global trend, with the live streaming market
projected to reach a value of more than $247 billion by 2027,
in large part due to increasing demand for interactive, real-
time experiences in gaming, entertainment, education, and
business [2]. In the U.S. alone, Twitch has become a central
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part of this ecosystem, boasting over 33 million active users,
many of whom engage with live streams multiple times each
week [3].

Given the important role that GEO networks play in internet
access and the rise of live streaming, it is essential to evaluate
how live streaming performs over these satellite connections.
Although GEO satellites provide extensive coverage, they
introduce significant latency due to their geosynchronous earth
orbit, typically resulting in a 600 ms round-trip delay [4].
Unlike the low delay in terrestrial connections, this latency has
the potential to present challenges for real-time applications
such as live streaming, where the algorithms are typically
inherently intolerant of high latency connections.

Quality of Experience (QoE), as a measure of user satis-
faction, is influenced by various Key Performance Indicators
(KPIs). On live streaming platforms such as Twitch, these
KPIs include video quality, smooth playback, interactivity, and
responsiveness, all of which are critical to maintaining high
viewer engagement. To this end, Twitch minimizes delays
between the broadcaster and the viewer to enable real-time,
high quality interactions that promote user retention. However,
when streaming algorithms are designed for low-latency de-
livery, there can be unintended consequences for high-latency
connections because this latency is not taken into account in
the algorithm design.

In this study, we systematically measure and analyze the
QoE of Twitch live streaming over GEO satellite (high-
latency) networks and compare the performance with that of
campus (low-latency) networks, looking for key differences
to understand how GEO network latency affects the behav-
ior of Twitch’s streaming algorithm. Specifically, this study
addresses the following research questions:

• How does the high latency inherent in GEO satellite
networks affect the QoE of Twitch live streams?

• What behaviors of Twitch’s streaming algorithm con-
tribute to QoE degradation in high-latency environments?

• What strategies can be implemented to enhance live
streaming performance over high-latency networks such
as GEO satellites?

By answering these questions, our goal is to provide insight
that can help improve live streaming services in high-latency
network environments, such as through informing the devel-
opment of latency-aware algorithms and optimizations.



II. RELATED WORK

Previous video QoE research for terrestrial networks has
emphasized on-demand platforms such as YouTube and Net-
flix, measuring KPIs such as resolution and rebuffering in
varying network conditions [5]–[10]. These studies assume
low latency and focus on buffering mechanisms and, hence,
do not yield insight into the performance of latency-sensitive
live streaming over long latency links.

Other recent studies have explored live streaming over
satellite networks, particularly integrated terrestrial-satellite
systems, which demonstrate QoE improvements through
architecture-level optimizations [11]–[13]. However, these
studies often overlook the client-side algorithmic behavior
critical to platforms such as Twitch. LEO satellite studies high-
light low-latency live streaming feasibility using technologies
like DASH [14], but the findings are inapplicable to GEO
networks due to significantly higher delays. Other work on
GEO satellite QoE, such as traffic shaping and dataset-based
prediction models, primarily focuses on on-demand platforms
or general QoE impacts, rather than the unique latency sen-
sitivity of live streaming [15], [16]. Although strategies like
bandwidth aggregation and edge computing improve streaming
in low-latency contexts, they do not address the challenges of
high-latency GEO connections [17].

Our work fills the gap in prior work by investigating
Twitch’s live streaming algorithms when subjected to the
latencies inherent in GEO satellite networks, identifying flaws
in client-side adaptation and proposing latency-aware improve-
ments to improve QoE in such high-latency environments.

III. METHODOLOGY AND DATA COLLECTION

To investigate how GEO network latency impacts Twitch
streaming QoE, we conducted controlled experiments compar-
ing a high-latency GEO satellite network with a low-latency
campus network, both shaped to identical bandwidth rates to
isolate the effect of the high latency.

A. Experimental Setup

We used the same Lenovo ThinkPad P14s laptop (running
Ubuntu 22.04) for both experiments to ensure consistency.
The campus network provided high throughput (>100 Mbps)
with 3.5 ms round trip time (RTT) to Twitch servers, while
the satellite connection introduced 627.5 ms RTT via a GEO
satellite link. Figure 1 illustrates our testbed configuration.

In sequential experiments, both networks were shaped to
both the 3 Mbps and 5 Mbps rates—chosen based on FCC
recommendations; 3 Mbps supports standard-definition and
5 Mbps supports HD video streaming [18]. This standardiza-
tion isolated the impact of latency from bandwidth effects. For
the satellite connection, bandwidth shaping was performed at
the connection level by the ISP. For the campus network, we
used Mahimahi [19] for interface-level shaping.

We collected HTTP-level data using browser proxies that
captured HTTP Archive (HAR) files during Chrome sessions.
HAR files contain detailed records of all HTTP transactions

Fig. 1: Campus and satellite network testbed configuration.

between the browser and servers, providing insight into chunk-
level network behavior and timing for each video stream.

B. Data Collection Process

We automated data collection using Python scripts with
Selenium and ChromeDriver to stream four-minute videos
while scraping Twitch’s “Advanced Video Stats” feature every
100 ms. This feature is a utility that displays detailed playback
statistics on the front end—similar to YouTube’s “Stats for
Nerds”—allowing for real-time monitoring of stream quality.
We collected 500 streams total: 250 per network type, with
125 streams each at the 3 Mbps and 5 Mbps rates. To ensure
content diversity, we sampled the top five streams from 25
different Twitch categories across genres including gaming,
simulation, and lifestyle content. Error handling ensured suc-
cessful data collection by automatically selecting alternative
streams when issues such as age restrictions or video player
errors occurred.

C. Metrics and Analysis

The metrics collected from the web-player’s “Advanced
Video Stats” include:

• Vertical Pixel Resolution: Video vertical resolution.
• Frames Per Second (FPS): Video stream frame rate.
• Rebuffering Status: Flag indicating rebuffering events

(FPS of zero or rebuffering wheel present).
• Latency to Broadcaster: Total delay from broadcaster

to viewer, including rebuffering delays.
From HAR files, we extracted chunk-level metrics, as

illustrated in Figure 2:
• Chunk Download Time: Duration from request start to

completion.
• Chunk Size: Size of each downloaded video chunk.
• Chunk Latency: Time from request to first byte received.
• Inter-Chunk Request Interval: Time between consecu-

tive chunk requests.
• Pre-Request Completion Fraction: Percentage of

chunks fully loaded before next request.
• Effective Chunk Throughput (TNetwork): Chunk size

divided by download time.
For each metric, we calculate key statistical measures for

each stream, including mean, median, variance, minimum,
and maximum values. We primarily use the mean values in
our analysis as those were found to be most informative. In



Fig. 2: Diagram of chunk level metrics

distributions and graphs, when we plot the mean of a statistic
and there are multiple points, we use “mean” to refer to the
mean of that statistic for each stream in the subset of data
shown in the plot.

D. Limitations of Bandwidth Shaping Methods

Our network shaping methods differed: Mahimahi per-
formed interface-level shaping on the campus network, thereby
shaping all traffic passing through the network interface,
including background processes and system activities. As a
result, some of the allocated bandwidth intended for the
Twitch streams was consumed by these background tasks,
leading to slightly lower effective bandwidth—quantified in
section V-A—compared to the intended shaping rates; this
could, in turn, theoretically degrade the QoE of the campus
network. In contrast, the satellite connection used token bucket
shaping, allowing brief bandwidth bursts up to 10% above
the nominal rate, which can benefit bursty applications like
video streaming.1 However, despite the campus network’s
shaping disadvantages, it still outperformed the satellite net-
work, indicating that high latency—not throughput limita-
tions—primarily drives the QoE degradation we observe.

IV. LIVE STREAM PERFORMANCE

We compare QoE metrics between the satellite and campus
networks to illustrate performance differences and highlight
challenges GEO satellite networks face in delivering consistent
live streaming quality.

Resolution and FPS Comparisons. Figure 3 shows video
resolution distributions. While the satellite connection tended
to achieve slightly higher video resolution than the campus
network (due to connection-level vs. interface-level bandwidth
shaping), both connections achieved similar FPS distributions
at each bandwidth rate. However, these occasional satellite
advantages in resolution did not translate to better QoE. As
shown in the following analysis, the GEO satellite connection
suffers from significantly higher rebuffering and latency.

Rebuffering and Latency. Figure 4 shows that satellite streams
experience substantially more rebuffering. Campus networks
had median rebuffering times of 14.24 and 7.75 seconds for 3
and 5 Mbps, respectively, while satellite networks had 22.69
and 27.62 seconds—nearly triple at 5 Mbps.

1The satellite ISP, Viasat, does not implement bandwidth shaping in
production due to performance issues arising from the interplay between high
latency and the client-side playback algorithm.

Figure 5 shows similar trends for latency to broadcaster.
Campus networks averaged 8.54 and 8.38 seconds for 3 and
5 Mbps, while satellite networks averaged 17.14 and 22.54
seconds, respectively.

We observe a strong linear correlation between rebuffering
time and reported latency to broadcaster (Figure 6). When
streams rebuffer, they freeze and resume from where they left
off, increasing reported latency by the rebuffering duration.
This trend continues until approximately 45 seconds of re-
buffering, after which chunks are deleted from CDN servers,
causing indefinite rebuffering unless manually reloaded.

Takeaways. Despite achieving higher resolution, Twitch de-
livers significantly worse QoE in GEO networks. The satellite
connection experiences substantially higher rebuffering times
and latency to broadcaster. This performance degradation,
despite adequate throughput, suggests that factors other than
bandwidth—specifically network latency—primarily impact
streaming performance. In the next section, we explore the
underlying causes of these performance issues.

V. EXPLAINING POOR QOE
While the Twitch streaming algorithm is mostly hidden from

the user, we were still able to find and identify key faults
in the chunk scheduling by examining the HAR files. These
faults largely explain the poor QoE. In this section, we delve
deeper into the QoS of each network type to understand the
QoE discrepancies. We find that Twitch’s chunk scheduling
algorithm has a critical flaw that leads to inefficient streaming
over high-latency networks.

A. Throughput is Not Limiting

An initial assumption might be that the poor QoE observed
on the satellite network is due to throughput limitations caused
by the high latency, which in turn impact TCP performance. To
assess this, we analyzed the effective throughput achieved dur-
ing video chunk downloads using the TNetwork metric. This
metric, as described in section III-C, represents the average
throughput achieved for a single video chunk, calculated over
the duration of the entire download.

Figure 7 presents a histogram of the TNetwork values for
the satellite and campus networks at the studied shaping rates.
The distributions reveal that the GEO network consistently
achieves higher effective throughput than the campus network.
As described in section III-D, shaping at the interface as
implemented in our campus network leads to a lower effective
throughput than we explicitly set. On the other hand, the
token-bucket shaping used by the satellite ISP enables higher
achieved throughput for the video chunks in the video streams.

These observations confirm that the poor QoE experienced
on the satellite connection is not due to throughput limitations.
Despite the increased latency, the TCP protocol effectively uti-
lizes the available bandwidth during chunk downloads (likely
thanks to the TCP proxies implemented by the ISP). The
high latency does not hinder the network’s capacity to achieve
throughput close to the shaping rate. Therefore, the degrada-
tion in QoE on the satellite network must be attributed to other



(a) 3 Mbps (b) 5 Mbps

Fig. 3: Distribution of video resolution.

(a) 3 Mbps (b) 5 Mbps

Fig. 4: Distribution of total time rebuffer-
ing.

(a) 3 Mbps (b) 5 Mbps

Fig. 5: Distribution of average reported
latency.

Fig. 6: Relationship between time rebuffering and average
reported latency to broadcaster.

(a) Campus network (b) Satellite network

Fig. 7: Distribution of mean TNetwork for chunks in a stream.

factors. In the subsequent sections, we explore how increased
latency affects the chunk scheduling algorithm used by the
Twitch client, leading to inefficient streaming performance in
high-latency environments. Specifically, we examine how the
timing of chunk requests relative to their playback rate impacts
the streaming buffer and overall viewing experience.

B. Chunk Request Interval is Greater than Playback Rate

The primary observation explaining the poor Twitch QoE
over the satellite connection is that chunks are requested
less frequently than they are played back. Since Twitch’s
video chunks are not encrypted, we were able to intercept
them during streaming using Chrome’s developer tools. We
observed that the live stream is delivered to the end host in
two-second video clips.

For smooth and uninterrupted playback, the client needs
to request new chunks at an average rate that matches the
playback rate—on average, every two seconds. If the average
time between chunk requests exceeds two seconds, the client
consumes video data faster than it receives new data. This

Fig. 8: Relationship between the average inter-chunk request
time per stream and the total time spent rebuffering.

mismatch causes the playback buffer to gradually deplete
because new chunks do not arrive quickly enough to replace
those being played. As a result, the buffer eventually empties,
leading to rebuffering stalls. The more the average inter-
chunk request time exceeds two seconds, the faster the buffer
depletes and the more frequent these interruptions become. For
example, if chunks are requested every 2.1 seconds on average,
the client falls behind by 0.1 seconds with each chunk. Over
time, this small delay accumulates, increasing the likelihood of
rebuffering. If the average request time stretches even higher,
the deficit grows more quickly, leading to more frequent and
longer pauses in playback.

To verify this relationship using our experimental data, we
calculated the mean inter-chunk request time and the total time
spent rebuffering for each stream we collected. We plot these
values in Figure 8. The plot shows a sharp increase in the total
rebuffering time when the average inter-chunk request time ex-
ceeds two seconds. This indicates that surpassing the chunk’s
playback duration in request intervals directly contributes to
buffer depletion and increased rebuffering events. Maintaining
an average inter-chunk request interval that matches or is less
than the chunk playback rate is essential to prevent these issues
and to ensure a smooth live-streaming experience.

Figure 9 shows the inter-chunk request times for the two
networks. Due to factors that are explained in section V-C,
the satellite connection tends to have significantly greater
inter-chunk request times compared to the campus network
connection. This disparity suggests that Twitch’s streaming
algorithm does not properly compensate for increased latency,
resulting in increased time between chunk requests with higher
latency. The delayed chunk requests accelerate buffer depletion
and increase rebuffering events.



(a) 3 Mbps (b) 5 Mbps

Fig. 9: Distributions of the middle 99% of mean inter-chunk
request times.

(a) 3 Mbps (b) 5 Mbps

Fig. 10: Mean chunk latency for satellite and campus connec-
tions.

C. Effect of Latency on Inter-Chunk Request Time

The achieved throughput for video chunk downloads over
the GEO network can be comparable to—or even exceed—that
of the campus network. However, despite this adequate
throughput, the inter-chunk request times (as explained in
section III-C) are significantly longer on the GEO satellite
connection compared to the campus connection; this was
illustrated in Figure 9.

To investigate this discrepancy, we analyze the chunk
latency (calculated in section III-C). Figure 10 presents a
comparison of the mean chunk latency for streams on the
two network types. The distributions reveal that the GEO
satellite network experiences significantly higher latencies,
with a median mean chunk latency of 0.77 seconds, compared
to 0.06 seconds for the campus network.

Upon analyzing the chunk scheduling algorithm used by
Twitch, we discovered that the Twitch client waits for a chunk
to be fully downloaded before requesting the next one. This
behavior implies that any increase in chunk latency directly
extends the inter-chunk request time; the client remains idle
until the current chunk has completely loaded.

To quantify this effect, we calculated the pre-request com-
pletion fraction of chunks in the stream; this calculation is de-
tailed in section III-C. On the satellite network, an average of
98.51% of the chunks were fully loaded before the next chunk
request was made. Similarly, for the campus network, the
average was 99.17%. However, due to the higher chunk latency
on the GEO satellite network, the waiting period significantly
extends inter-chunk request times, reducing effective network
utilization and unnecessarily causing the average inter-chunk

Fig. 11: Mean chunk download time vs. average inter-chunk
request time for the satellite and campus networks. The
diagonal line shows a linear one-to-one relationship.

request interval to exceed the two-second critical point. In
contrast, on the low latency campus network, the waiting
period after each chunk download is minimal, and the inter-
chunk request times remain below the two-second playback
duration. Therefore, the client can maintain a stable buffer,
ensuring smoother playback.

The relationship between chunk download times and inter-
chunk request times is further illustrated in Figure 11. The
scatterplot shows a clear correlation between the average
chunk download time and the inter-chunk request time for
both connection types. While the campus network maintains
inter-chunk request times around or below the critical two-
second threshold, even with varying chunk download times,
the satellite network inter-chunk request times consistently
exceed two seconds as chunk download times increase.

As Figure 11 shows, the GEO satellite network tends to
experience much higher inter-chunk request times compared
to the campus network, which correlates with the higher chunk
download times due to the increased latency. For GEO satellite
connections, inter-chunk request times are often above two
seconds, the critical threshold for uninterrupted playback. This
behavior is a direct result of waiting for each chunk to be
fully loaded before requesting the next one, a process that is
especially inefficient in high-latency environments.

Takeaways. Our analysis shows that the primary reason for
lower QoE on the GEO satellite connection is the client’s
chunk scheduling algorithm failing to account for high latency.
Specifically, the Twitch client aims to optimize QoE by maxi-
mizing playback bitrate and frame rate, selecting high-quality
chunks that saturate the available bandwidth for a two sec-
ond download period. However, in high-latency environments,
this strategy leads to chunk download times approaching or
exceeding the chunks’ playback duration. Crucially, because
the client waits until the current chunk is fully downloaded
before initiating the next request and does not request the
next chunk early enough to account for the increased latency,
the inter-chunk request intervals exceed the chunks’ playback
duration. Consequently, the client consumes video data faster
than it receives new chunks, causing the playback buffer to



deplete. Viewers experience this as a repetitive cycle: watching
two seconds of video followed by a rebuffering pause. We
confirmed this behavior by manually observing streams on the
satellite connection, where the playback pattern matched our
empirical findings.

VI. TOWARDS LATENCY-RESILIENT LIVE STREAMING

To address buffer depletion and frequent rebuffering events
in high latency networks, a latency-aware scheduling mecha-
nism that enforces a strict upper bound on inter-chunk request
intervals offers a promising approach. Specifically, if a chunk
downloads in less than two seconds, the client immediately
requests the next chunk. However, if two seconds have elapsed
since the previous request, the next request is issued at
exactly the two-second mark, regardless of the current chunk’s
download status. This approach ensures that request intervals
never exceed the chunk playback duration while maintaining
responsiveness when network conditions permit. This design
aims to stabilize the buffer in high-latency conditions without
fully disassociating request timing from download progress.

However, challenges could arise when throughput fluctu-
ates significantly. In mobile or congested networks, short-
term bandwidth drops may push download times beyond two
seconds, potentially prompting premature quality downgrades
or momentary overlaps in chunk downloads. Addressing these
challenges requires further evaluation in real-world condi-
tions, where additional optimizations—such as integrating
latency-aware ABR logic or leveraging network-side enhance-
ments—may improve performance.

VII. CONCLUSION

In this paper, we investigated the impact of a high-latency
GEO satellite connection on Twitch QoE, revealing inefficien-
cies in the chunk scheduling algorithm used by the Twitch
client at the time of our experiments. Specifically, the client
tries to saturate the available bandwidth but fails to account
for latency, leading to inter-chunk request intervals that exceed
the playback duration of the chunks. This in turn causes buffer
depletion, rebuffering, and playback interruptions. In extreme
cases, streams stall indefinitely when chunks are no longer
retrievable from the CDN.

To enhance QoE for users on high-latency networks, Twitch
and other live streaming services should ensure their chunk
scheduling algorithms account for network latency. A re-
fined solution is to employ a dynamic scheduling mechanism
that enforces a strict two-second upper bound on the inter-
chunk request interval—aligned with the chunk playback du-
ration—while still allowing immediate requests when network
conditions permit rapid downloads. As streaming platforms
reduce chunk durations to achieve lower end-to-end latencies,
even minor network delays can significantly impact perfor-
mance, underscoring the necessity for streaming services to
consider network latency in their algorithm designs, regardless
of the absolute latency values.
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