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Abstract. Geosynchronous satellite (GEO) networks are an important
Internet access option for users beyond terrestrial connectivity. How-
ever, unlike terrestrial networks, GEO networks exhibit high latency
and deploy TCP proxies and traffic shapers. The deployment of proxies
effectively mitigates the impact of high network latency in GEO net-
works, while traffic shapers help realize customer-controlled data-saver
options that optimize data usage. However, it is unclear how the in-
terplay between GEO networks’ high latency, TCP proxies, and traffic-
shaping policies affects the quality of experience for commonly used video
applications. To address this gap, we analyze the quality of over 2 k
YouTube video sessions streamed across a production GEO network with
a 900 Kbps shaping rate. Given the average bit rates of the videos, we
expected streaming to be seamless at resolutions of 360p, and nearly
seamless at resolutions approaching 480p. However, our analysis reveals
that this is not the case: 30% of both TCP and QUIC sessions experience
rebuffering, while the median average resolution is only 404p for TCP and
360p for QUIC. Our analysis identifies two key factors that contribute
to sub-optimal performance: (i) unlike TCP, QUIC only utilizes 70% of
the network capacity; and (ii) YouTube’s chunk request pipelining ne-
glects network latency, resulting in idle periods that disproportionately
harm the throughput of smaller chunks. As a result of our study, Viasat
discontinued support for the low-bandwidth data-saving option in U.S.
business and residential markets to avoid potential degradation of video
quality—highlighting the practical significance of our findings.

Keywords: Video streaming · Geosynchronous satellite network · Qual-
ity of experience · Quality of service.

1 Introduction
Geosynchronous satellite (GEO) networks, through providers such as Viasat and
HughesNet, are a key last-mile Internet access technology in challenging envi-
ronments such as rural and other hard-to-reach communities, aircraft, sea ships,
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and others. While recently low Earth orbit (LEO) satellite networks have grown
in availability, the high cost of deploying and maintaining LEO networks can
hinder access for under-served communities [28], making GEO networks an at-
tractive alternative. GEO satellites orbit 22 k miles above the earth and move at
the same speed as the earth, ensuring that their location remains fixed relative
to the ground stations over time. While convenient for routing simplification,
the geosynchronicity comes at the cost of high latency; round trip times through
GEO satellites are typically 500-600 ms. To mitigate the effects of this latency,
GEO ISPs often employ a variety of techniques. These usually include TCP
Performance Enhanced Proxies (PEP) with geo-optimized configurations. Ad-
ditionally, many wireless plans, both terrestrial and satellite, provide customers
with a fixed high-speed data quota (gigabytes) per month. After a customer
consumes this data, their traffic is deprioritized, which can result in slow speeds
for the user when the network is congested. To avoid data deprioritization, cus-
tomers are typically provided with an option to reduce general data consumption
by shaping their video traffic, thereby enabling high-speed data to last longer.

As the dominant Internet application, accounting for approximately 53% [6]
of total Internet traffic, video streaming is a critical application to support in all
network types. Particularly in remote areas, video streaming can be critical for
activities such as online education and work. Prior studies of video streaming
QoE have typically been conducted either in emulated or production terrestrial
networks characterized by low delay and high bandwidth (e.g. [32, 12]). Amongst
the results, these studies show that QoE degradation events are rare in terrestrial
networks. Prior studies have also analyzed the impact of the transport layer in
video performance, in particular comparing TCP and QUIC, the latter of which
has gained wide adoption by applications such as YouTube [7, 4, 31, 29]. Some
studies have shown that TCP and QUIC have similar performance for video
streaming tasks in terrestrial networks [4, 31, 20], while in [14] Google claims
that QUIC improves YouTube QoE key performance indicators (KPIs). However,
because of their inherent differences, it is not clear whether these results hold in
GEO networks, particularly when traffic shaping is employed.

We address this understanding gap through an extensive study of video
streaming performance over an operational GEO satellite network. We focus
our study on YouTube because of its widespread popularity; current data places
YouTube video consumption as outpacing that of Netflix worldwide.4 We stream
2,080 180-190 second videos, using either the TCP or QUIC protocol, and analyze
the resulting QoE KPIs to characterize the video performance. Given the video
bit rates to support 360p and 480p resolution, we expect consistent seamless
streaming at an average resolution exceeding 360p. Critically and surprisingly,
our first key discovery is that neither TCP nor QUIC achieves consistent seamless
streaming at an average resolution of more than 360p when traffic is shaped at
900 Kbps, the rate offered to customers in our production network. Specifically,

4 For instance, one study states that, in 2022, YouTube represented 15% of traffic on
consumer broadband networks, while Netflix represented 9% [6].



we observe that 30% of each of TCP and QUIC sessions experience rebuffering
events, while the median average resolution is 404p for TCP and 360p for QUIC.

To understand this observation, we analyze the video traffic and determine
that TCP utilizes all available link capacity during transmission, while QUIC is
only able to utilize 70% of the capacity. Our results suggest that the performance
of QUIC, specifically in conjunction with the BBR congestion control algorithm,
is suboptimal when used in GEO networks. Furthermore, both TCP and QUIC
suffer from imperfect chunk request scheduling, resulting in idle time that further
reduces the overall throughput for TCP by 36% and QUIC by 26%.

As a result of our study, Viasat discontinued support for the low-bandwidth
data-saving shaping option in its U.S. business and residential network to avoid
potential degradation of video quality. We encourage YouTube and other content
providers to more fully consider the operational environment of GEO networks
and optimize players to deliver high quality video despite the presence of high
latency links and other GEO network features. Additionally, optimization is
needed for the QUIC + BBR [14] stack to achieve performance comparable to
PEP-enabled TCP + BBR in GEO satellite networks.

2 Background and Motivation

In this section, we provide background on the three key concepts in this paper.
First, we describe video streaming, and in particular the use of adaptive bit rate
algorithms and the KPIs that are used to measure video QoE. The characteristics
of GEO satellite networks are then discussed, along with optimizations incor-
porated to provide customers with improved performance. Finally, we describe
key features of the QUIC protocol, including a discussion of why QUIC is not
necessarily the better protocol for GEO satellite networks despite its apparent
suitability for video streaming.

2.1 Video streaming applications (VSAs)

Internet video streaming services typically divide a video into smaller segments
called chunks. These chunks are often of different playback durations; hence
the chunks can be of variable size [22]. The video quality is determined by the
number of pixels in each frame (i.e., resolution) and the (average) number of
bits per second of playback (i.e., bit rate). Most streaming service providers use
variable bit rates (VBR) to encode the video into a sequence of frames. The
number of bits needed to encode a specific chunk depends on the video type and
its quality [17]. In general, high-action/high-resolution chunks require more bits
to encode than motionless and/or lower-resolution chunks.

Adaptive bit rate algorithms. To optimize the viewing experience, each
client maintains a buffer where it stores received chunks. With this repository,
the likelihood of continuous playback during a video session is greatly increased.
At the video session start, the client waits to fill this buffer to a predefined level
before video playback begins. The client begins by sending an HTTPS request
to retrieve a specific segment at a pre-selected quality (e.g., 360p). On receiving
this request, the server sends the requested segment to the client.



Each client uses an application-layer adaptive bit rate (ABR) algorithm to
determine the quality of the request in the next segment. The ABR algorithms
employed by most video streaming services are proprietary, but previous work
has shown that these algorithms typically use parameters such as estimated
bandwidth and current buffer size to determine the quality of the next requested
segment [38, 18].

Quality of experience for VSAs. Video stream QoE is determined by sev-
eral KPIs. These include initial buffering time, resolution, and the number of re-
buffering events. During a rebuffering event, video playback is paused while the
received video is placed into the playback buffer. For optimal QoE, rebuffering
events, resolution switches, and initial buffering time should be minimized [30].
A higher resolution is preferred as long as there is sufficient network bandwidth
to deliver the video chunks before the playout deadline [11].

The goal of the ABR algorithm is to select the appropriate resolution for
each chunk to maximize viewing resolution while also minimizing events that
lower QoE. Most video streaming applications work very well in high-bandwidth
(more than 10-15 Mbps), low-latency (few tens of ms) networks [26]. However, it
is far less clear how well they perform in high-latency networks and shaped band-
width, which are typical of GEO networks. Further, it is not well-understood how
well these applications are able to interact with additional network components,
such as TCP proxies and traffic-shaping algorithms, that are common in GEO
networks. Hence, it is in these environments that our work focuses.

2.2 Geosynchronous satellite networks

Geosynchronous satellite networks use wireless links between ground stations
and space satellites to connect subscribers to the Internet. Transparent TCP
proxies, which speed up TCP slow-start and congestion recovery, are often em-
ployed to mitigate the effects of the long round-trip propagation delays of GEO
links. Two TCP proxies are typically used: upstream and downstream. The up-
stream proxy runs at the ground station, while the downstream proxy runs at
the satellite modems closer to the end-users. As a result of these proxies, each
video streaming session entails three independent TCP connections: server-to-
upstream-proxy (C1), upstream-to-downstream-proxy (C2), and downstream-
proxy-to-client (C3), as shown in Figure 1. The upstream proxy acknowledges
packets coming from the video server aggressively and therefore increases the
congestion window quickly. On the client side, packets are acknowledged imme-
diately as well.

In addition to TCP proxies, many satellite and mobile wireless network op-
erators provide data-saver options that use traffic shapers to constrain the band-
width allocated to different applications [15]. This enables users to view more
hours of video or engage in other network activities while reducing the likelihood
they exceed their monthly data limit.

QUIC in GEO satellite networks: QUIC is rapidly becoming the default
transport layer protocol for many online services [14, 19]. YouTube, for example,
is predominantly transmitted over QUIC. QUIC runs in user space, uses UDP
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Fig. 1: Testbed configuration.

for data transmission, and is designed for applications that use multiple HTTPS
multiplexed connections. Compared to TCP, it expedites the connection setup
by reducing the number of round trips required to establish a connection between
the two end hosts. During packet losses, QUIC avoids head-of-line blocking by
servicing unaffected streams while recovering lost packets. TCP proxies cannot
be leveraged by QUIC-based connections because QUIC connections are cryp-
tographically signed end-to-end. Hence the feedback loop of QUIC is delayed in
GEO networks. As a result of these key differences, it is unclear how QUIC will
perform over GEO links and how video QoE will be impacted when used with
other components such as the PEP and traffic shaper. This observation serves
as the driving force behind our investigation.

3 Methodology and Dataset

In this section, we describe the configuration of our testbed and the methodol-
ogy used to stream YouTube videos while collecting HTTP logs and QoE KPIs.
Additionally, we provide a summary of the dataset and experiment metrics col-
lected.

Testbed. Figure 1 illustrates the primary components of our testbed net-
work architecture, including the YouTube server, traffic shaper, server-side TCP
proxy, satellite link, client-side proxy, and client laptop. Note that because this
is a production network, the client laptop is the only component over which we
have direct control. To improve TCP performance over the long latency satellite
link, TCP traffic is split into three separate connections (C1, C2, and C3), as
shown in the figure. On the other hand, QUIC traffic is not split into separate
connections due to its use of end-to-end encryption; the proxies simply forward
the traffic. The client laptop is used to collect HTTP logs. The satellite provider
uses a token bucket traffic shaper to limit the throughput of video traffic on
the low-latency link between the YouTube server and the upstream proxy, with
an average bandwidth shaping rate of 0.9 Mbps and bursts up to 0.99 Mbps.
The authors of [15] found that multiple GEO satellite network ISPs utilize this
shaping rate.5 Importantly, we note that the playback resolution under either
constant or variable bandwidth shaping will differ depending on the operation

5 Note that traffic shaping is a subscriber opt-in feature for the ISP in the study.
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Fig. 3: Chunk request model.

of the ABR and VBR algorithms. The client side congestion control algorithm
is CUBIC (Ubuntu Default); however, we are more interested in the server side
congestion control (CC) algorithm because it determines how quickly video/au-
dio data is sent to the client. The server side congestion control algorithm is
BBRv3 [1]. Finally, the congestion control algorithm used between the client
and server proxies is a proprietary version of ECN-enabled CUBIC with modifi-
cations such as a large initial congestion window. Upon detecting congestion, the
window size is reduced by 1/3. The congestion window then increases slowly at
first, and eventually grows exponentially, similar to TCP CUBIC. The technical
details of the testbed are summarized in Table 1.

Operating System Ubuntu 22.04

Browser Google Chrome

Client Congestion Control CUBIC with hystart

Server Congestion Control BBRv3

Table 1: Technical details of the testbed.

YouTube experiments. We analyzed an open video catalog of approximately
8 million entries released by YouTube [2] to collect representative data from
a variety of video types. We randomly selected 13 videos from each of the 16
distinct video categories6 to form a total pool of 208 videos. We streamed each
video with YouTube’s production ABR ten times: five with QUIC enabled and
five with QUIC disabled, for a total of 2,080 sessions; TCP was utilized in the
QUIC-disabled sessions. We restarted the browser before each session to avoid
caching. Each video is between 180-190 seconds in length to improve the scal-

6 Categories collected are: Sports, Education, Science & Technology, Shows, Pets &
Animals, Nonprofits & Activism, News & Politics, Gaming, Music, Comedy, People
& Blogs, Autos & Vehicles, Film & Animation, Entertainment, Howto & Style,
Travel & Events. Categories such as Sports are usually of higher bit rate compared
to Education.



ability of the experiments while simultaneously being long enough to allow the
congestion window to saturate at its maximum capacity [13]. The average bit
rate of each of the 208 videos at 360p and 480p is represented as a CDF in
Figure 2. The figure demonstrates that the videos selected are close to a uni-
form distribution; we verify this result for the other video resolutions but omit
those results from the graph for clarity. The data collection process took place
in October 2023.

Collection methodology. We assess the QoE of each video stream by gath-
ering multiple well-defined QoE KPIs [30] for every YouTube session. Each ex-
periment starts by randomly selecting a video and streaming it twice, once with
QUIC enabled (we confirm that QUIC is used via HTTP logs) and once with it
disabled (TCP enabled). The order of the QUIC/TCP protocols is reversed for
each randomly chosen video to minimize bias introduced by CDN caching [3].
The resolution is set to automatic and a Chrome extension is utilized to capture
player events at 250 ms intervals. The player events are then transmitted to a
local server for storage, while a Python script driving Selenium is used to capture
HTTP logs. This process is repeated until every video in the dataset is streamed
five times with each transport protocol. We identify advertisement videos by
timestamp and their different Video ID in “stats for nerds” and remove them
from QoE and chunk analysis. The collected QoE KPIs are as follows:

– Average session resolution: given n available resolutionsR = {R1, R2, . . . Rn}
in a session, the fraction of time each resolution is viewed within the session
is P = {P1, P2 . . . Pn}; the average session resolution is given by

∑n
i=1 PiRi.

– Initial buffering time: the time from the instant when the video player con-
nects to a server to the time when the first video frame is rendered and played.
For this metric only, we exclude video sessions with pre-roll advertisements,
and analyze 509 TCP and 509 QUIC sessions.

– Resolution changes: the number of resolution switches per video. Frequent
switches usually lead to unsatisfactory user experience [30].

– Rebuffering events: the number of times the playback pauses due to in-
sufficient buffered video. Few or no rebuffering events are desired for better
QoE.

Video/audio chunks. Video and audio chunks are the fundamental opera-
tional unit of ABR algorithms; therefore, our analysis focuses on network per-
formance at the chunk granularity. To obtain the performance of these chunks,
we first filter out all HTTP Network.requestWillBeSent events reported by
Chrome. Then we ensure these requests contain ?videoplayback in their URL as
well as video or audio as their MIME type. We keep track of the request_id of
these events and obtain all Network.dataReceived events of the corresponding
request_id. Finally, we group Network.dataReceived events by request_id

to compute the size and performance metrics of each video/audio chunk.
Although such methods can only be applied if we have direct control over the

client Chrome browser, previous work [9] has proposed methods to heuristically
infer video/audio chunks based on the amount of data received between two



HTTP requests. However, based on our HTTP logs, we found that the heuristic
approach may no longer be viable because 40% of video and audio chunks are
smaller than the previously defined threshold of 80 KB; these chunks could be as
small as 4 KB. Additionally, contrary to previous literature [9], new chunks can
be requested before the completion of the previous chunk’s transmission in GEO
satellite networks. This requires us to model the chunk-downloading mechanism
slightly differently as shown in Figure 3.

Chunk-level metrics. In a GEO network, video and audio chunks are pri-
marily requested sequentially, but there are instances where a new request for
additional chunks may be initiated before the previously requested chunks are
fully received. To analyze the streaming behavior of the chunks, we utilize the
following chunk-level metrics:
– Chunk time to first byte (TTFB): the interval between the time a re-

quest is initiated and the first byte of data for the chunk is received. [25] find
that this metric has an impact on chunk throughput; however, this should
be differentiated from the idle time since TTFB does not consider previous
chunks.

– Idle time: the interval between the end of the previous chunk’s transmission
and the beginning of the following chunk’s transmission. Due to a large ac-
cumulated playback buffer, YouTube may occasionally decide to pause chunk
requests for an extended period of time (tens of seconds). This causes the
chunk throughput to be low irrespective of network conditions. Therefore, we
only consider chunks that are requested within one second of the completion of
the previous chunk. We also group chunks with negative idle time into larger
chunks during our throughput analysis. This approach allows us to account
for the overlapping download periods of these chunks.

– Chunk download time: the interval between when the first and final bytes
of a chunk are received.

– Chunk size: the amount of data received in the requested chunk.

– Throughput with idle time (Tidle): the chunk throughput when idle time is
taken into account. This metric demonstrates how imperfect request pipelin-
ing affects the throughput of chunks. Under shaped bandwidth, where buffer
health remains relatively low, video chunk requests are made continuously and
in a sequential manner. When these requests are perfectly pipelined, there
should not be any idle time. The metric is given by:
Tidle =

Chunk Size
Idle T ime+Chunk Download Time

– Throughput without idle time (Tnetwork): the chunk throughput when
idle time is not taken into consideration. This demonstrates how effectively
the chunk download is using the underlying network resource and is given by:
Tnetwork = Chunk Size

Chunk Download Time

4 Video Stream Performance
A key goal of our study is to understand the YouTube QoE received by users
when they enable video bandwidth shaping to reduce data usage. As part of



0 1 2 3 4 5
Number of rebuffering events

0.0

0.2

0.4

0.6
Pr

ob
ab

ilit
y

TCP
QUIC

Fig. 4: Number of rebuffering events.

200 300 400 500 600 700
session mean pixel

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y

TCP
QUIC

Fig. 5: Session average vertical pixel
height.

1
4

4
p

2
4

0
p

3
6

0
p

4
8

0
p

7
2

0
p

Resolution (pixels)

0.0

0.1

0.2

0.3

P
o
rt

io
n
 o

f 
ti

m
e
 v

ie
w

e
d TCP

QUIC

Fig. 6: Percent of time viewed at each
resolution.

0 1 2 3 4
Number of resolution changes

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

TCP
QUIC

Fig. 7: Number of resolution changes.

this analysis, we quantify any performance differences based on the use of QUIC
or TCP + PEP at a bandwidth shaping rate and a burst rate of 0.9 Mbps
and 0.99 Mbps, respectively, which is the bandwidth shaping option commonly
supported by GEO network providers, including in our Viasat production net-
work [15].

We begin by analyzing the QoE KPIs. In Figure 2, we observed that the
maximum average bit rate of 360p videos is only 0.63 Mbps, which is approxi-
mately 70% of the traffic shaping rate. Similarly, 0.9 Mbps is also more than the
average bit rate of 70% of the videos at 480p. Consequently, we expect the aver-
age resolution to be more than 360p with minimal rebuffering events because of
the ABR behavior. The ABR should stream at 480p and then switch to 360p or
lower only when the buffer health becomes low. Hence rebuffering events should
be minimal if the underlying network resource is utilized efficiently. However,
contrary to our expectations, we find that only 70% each of the TCP and QUIC
sessions do not experience rebuffering, as shown in Figure 4. Notably, the resolu-
tion achieved by QUIC sessions is significantly lower than that of TCP sessions,
as shown in Figure 5. The median average session resolution for TCP is 404p,
whereas for QUIC the median average session resolution is only 360p. Specifi-
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cally, Figure 6 shows that 14% of the TCP streaming time is at a resolution less
than 360p, while 33% of the QUIC streaming time is less than 360p. Surprisingly,
these metrics indicate that neither the QUIC nor TCP sessions consistently meet
our QoE expectations, with QUIC, in particular, struggling to stream at higher
resolution consistently.

We next examine the initial buffering delay and number of resolution changes.
Figure 7 shows that the number of resolution changes for TCP and QUIC are
similar, with mean values of 1.28 and 1.57 per session, respectively. The mean
initial buffering delay of TCP is 8.25 seconds while QUIC is 7.95 seconds, shown
in Figure 8.

In summary, the results show that QUIC and TCP have similar numbers
of rebuffering events, resolution changes and initial buffering delay. Further,
neither QUIC nor TCP is able to stream seamlessly at an average resolution of
more than 360p when bandwidth shaping is utilized. We hypothesize that there
are suboptimal transport and/or application layer operations that manifest in
unexpectedly poor performance in long-latency networks, preventing both TCP
and QUIC, in particular, from fully utilizing available network resources and
achieving better performance. In the following section, we explore chunk-level
QoS to uncover potential reasons for lower-than-expected QoE.

5 Diagnosis of Sub-optimal QoE

Section 4 showed that both TCP and QUIC fail to deliver expected QoE KPIs,
with QUIC, in particular, struggling to provide higher resolution. In this section,
we dig deeper into these results to understand this performance anomaly.

5.1 Insufficient network resource utilization

Figures 2 and 6 demonstrated that sufficient bandwidth was available to stream
at 360p, yet 33% of the time, QUIC streamed at a lower resolution. Our goal is to
understand why QUIC is unable to utilize available network resources efficiently.



We begin with the throughput of individual chunks when the idle time is not
considered, depicted in Figure 9. The figure shows that TCP clearly forms a
peak around 900 Kbps, the shaped bandwidth, whereas QUIC’s throughput
widely varies well below 900 Kbps. The mean and median of TCP Tnetwork are
0.92 Mbps and 0.91 Mbps, respectively, while the mean and median of QUIC
Tnetwork are 0.63 and 0.64 Mbps.

Both TCP and QUIC use BBR as their server-side congestion control algo-
rithm. BBR continuously probes for the bottleneck bandwidth and propagation
delay to determine the sending rate; however, we have seen that QUIC does not
send at a rate that saturates the capacity of the link. Therefore, we hypothesize
that the BBR algorithm performs differently with QUIC compared to TCP in
GEO networks, likely as a result of PEP in the network architecture. Specifi-
cally, QUIC BBR experiences the full 600 ms of latency across the satellite link,
whereas TCP BBR experiences only the low-latency link (typically less than
100 ms round trip time) between the YouTube server and PEP server proxy.
The difference in this propagation delay may cause the YouTube server to in-
correctly estimate the available bandwidth and send data at a rate that never
fully saturates the link when QUIC is used. Prior work, such as [35] and [5],
has also observed that the combination of TCP+PEP+BBR achieves higher
throughput than QUIC+BBR. Relatedly, [35] showed that the slow-start phase
of QUIC+BBR is the cause of the lower throughput; QUIC+BBR requires up
to 10 seconds to reach maximum throughput, whereas TCP takes less than one
second. In our analysis, we observe that Tnetwork of QUIC is still variable well
below 900 Kbps even for video chunks requested 30 seconds or more after the
session start (this result is included in the Appendix). As a result, the start-up
phase is not the only factor that affects the performance of QUIC+BBR in our
test network.

5.2 YouTube scheduling inefficiencies

Prior work has shown that many YouTube videos are not watched to comple-
tion [24]. As a result, YouTube tries to reduce unnecessary bandwidth consump-
tion by limiting the number of chunks downloaded in advance. Our analysis has
shown that it is possible for the currently requested chunk to start transmis-
sion before the completion of the previous chunk. Ideally, the YouTube ABR
should learn the RTT of the network and request the next chunk slightly before
the completion of the current chunk (the TTFB of each chunk is shown in the
Appendix). This would minimize the amount of time spent idling by the net-
work and therefore increase network utilization. However, as shown in Figure 10,
we observe that more than 78% of the chunks experience idle time with both
TCP and QUIC. Interestingly, we can also observe that a peak occurs around
600 ms. This suggests that the high propagation delay of the GEO network is
not considered when making chunk requests. Note that we ignore chunks with
long idle time caused by abundant playback buffers in our analysis. This allows
us to focus on periods when high network utilization is critical.

To assess the impact of this idle time on smaller chunks whose throughput
is dominated by idle time, we analyze the relationship between the size of the
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QUIC.

chunk downloaded and the throughput achieved for both TCP and QUIC. Fig-
ure 11 shows a logarithmic relationship between the two variables. Therefore, we
calculate the Pearson correlation of achieved throughput and log(chunk size) to
characterize the relationship. QUIC shows a positive Pearson correlation of 0.59
(≪ 0.05 p-value), whereas these two variables are also correlated for TCP with a
Pearson statistic of 0.62 (≪ 0.05 p-value). Similar trends are observed in [16] for
4G and WiFi networks. This leads us to infer that these pipelining inefficiencies
significantly reduce the throughput of smaller chunks. In addition, shaped traffic
on GEO networks is disproportionately impacted due to their lower bandwidth
and higher latency. According to [22], YouTube tends to request smaller chunks
when bandwidth is lower. We observe that more than 53% of all chunks in our
sessions are less than 0.1 MB; this, in turn, further exacerbates the problem. It
is worth noting that the chunk-requesting inefficiency observed in our study may
be specific to low-bandwidth high-latency scenarios.

To investigate this hypothesis, we compare the impact of idle time in the
GEO network with that on our campus network, which is both high bandwidth
and low latency. We stream the same 2,080 videos to a desktop in our cam-
pus research lab and find that the median idle time for both TCP and QUIC
is short, approximately 15 ms (supporting the assumption of almost ideal se-
quential chunk requesting). Moreover, given the abundance of campus network
capacity, the idle time has no practical impact on QoE in this setting, with
achieved throughput Tidle exceeding 60 Mbps. In contrast, in the shaped GEO
network, the median achieved throughput Tidle for TCP and QUIC is approxi-
mately 0.58 Mbps (0.64 Tnetwork) and 0.47 Mbps (0.73 Tnetwork), respectively.
This suggests a correlation between idle time and the round trip propagation
delay of the network, providing further evidence that the existing pipelining
mechanism is sub-optimal in GEO networks. In summary, TCP experiences a
36% throughput reduction due to idle time, even with the link being saturated
during transmission, while QUIC suffers a 27% reduction in throughput due to
idle time, and then an additional 30% reduction because QUIC is unable to fully
utilize the link capacity during transmission.



6 Related Work
Prior literature has studied the QoE of ABR streaming and YouTube [36, 23, 10,
21]. However, far fewer studies have investigated video streaming QoE in opera-
tional GEO networks. In [8], a framework that facilitates live 4k video streaming
over a 5G core network via a GEO satellite backhaul is proposed. However, the
focus of this work is live video streaming, as opposed to non-real-time video
streaming in our study. [34] proposes a caching framework that improves video
streaming QoE within GEO satellite networks. The limitations of this study in-
clude the utilization of an academic DASH player and the investigation of only
a single video. Distorted versions of videos are generated in [37] by adjusting
QoS parameters such as packet loss. The distorted videos are replayed to vol-
unteers, and the corresponding Mean Opinion Score is recorded. This work uses
an emulated satellite link, and the impact of ABR is not considered. A recent
study [27] benchmarked multiple satellite ISPs across various tasks, including
video streaming. The results are complementary to those of our study. Net-
flix’s recent paper [33] demonstrates that server-side pacing effectively reduces
congestion from bursty on-demand video transmission, maintaining QoE. This
approach can also eliminate the need for ISPs to deploy traffic shaping. Exten-
sive prior work has analyzed transport protocol performance [31, 4, 20]; however,
these studies utilize a low-latency link. For instance, [31] uses a network emula-
tor to shape home and mobile networks to 1 Mbps to study YouTube streaming
QoE. In this environment, the authors conclude there is no meaningful difference
between TCP and QUIC performance. Through the use of an academic DASH
player in a terrestrial network and only one video, [4] concludes that the QUIC
protocol does not improve QoE. Finally, the page load time difference between
TCP and QUIC is studied in [20].

7 Conclusion

Our study characterizes the QoE KPIs of YouTube in a production GEO satellite
network with 900 Kbps traffic shaping. We find that, despite the average bit
rate of all the 360p resolution videos, and a majority of the 480p resolution
videos, being less than the shaped bandwidth, the performance of these video
streams is sub-optimal. Our work highlights the challenge of employing traffic
shaping as an effective means to control video resolution, and therefore data-
usage, on high latency networks, and the importance of accounting for network
delay in chunk size and request timing for high quality video streaming. Many
of the populations that stand to gain Internet access over the coming years will
do so through non-traditional network architectures, including GEO networks.
Application designers and content providers must consider a wide variety of
network types and characteristics in their product, protocol design and content
provisioning strategies to avoid unanticipated performance anomalies.



A Appendix

A.1 Ethical Considerations

Although our work involves HTTP log analysis on an operational GEO satellite
network, our work is not human subjects research. At no point is any data
collected from the customers of the network. We collect and analyze only our
own experimentally generated traffic.
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A.2 Supplementary Results

In this section we include some additional, supplementary graphs that were
briefly described in the main body of the paper. The median idle time for both
TCP and QUIC was short in our campus network experiment, around 15 ms,
as shown in Figure 12. This result suggests that the pipelining inefficiency is
magnified by the high round trip time of the GEO satellite network. Figure 13
shows the Tnetwork after 30 seconds of playback, in order to eliminate any effect



due to slow start. The figure indicates that QUIC throughput still varies well
below the shaped bandwidth 900 kbps. This indicates that congestion control,
and specifically the initial slow start, are not the source of the low throughput.
Figure 16 shows the TTFB of each chunk. We can observe that almost all chunks
have a TTFB larger than 600 ms; QUIC in particular forms a cluster close to
600 ms. The correlation between achieved throughput (Tidle) and chunk size for
TCP is illustrated in Figure 14. The Pearson statistic for correlation of achieved
throughput and log(chunk size) is 0.62. Finally, Figure 15 shows that the Tidle

of TCP outperforms that of QUIC in GEO networks; the median TCP through-
put is 0.58 Mbps, while QUIC’s median throughput is 0.47 Mbps. Importantly,
however, neither reach the shaped bandwidth rate. Figure 16 shows the TTFB
of each chunk. The median chunk TTFB for TCP is 1.21 seconds, while it is
0.78 seconds for QUIC.
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