
AODV Routing Protocol Implementation Design

Ian D. Chakeres
Dept. of Electrical & Computer Engineering

University of California, Santa Barbara
idc@engineering.ucsb.edu

Elizabeth M. Belding-Royer
Dept. of Computer Science

University of California, Santa Barbara
ebelding@cs.ucsb.edu

Abstract

To date, the majority of ad hoc routing protocol research
has been done using simulation only. One of the most moti-
vating reasons to use simulation is the difficulty of creating
a real implementation. In a simulator, the code is contained
within a single logical component, which is clearly defined
and accessible. On the other hand, creating an implemen-
tation requires use of a system with many components, in-
cluding many that have little or no documentation. The im-
plementation developer must understand not only the rout-
ing protocol, but all the system components and their com-
plex interactions. Further, since ad hoc routing protocols
are significantly different from traditional routing protocols,
a new set of features must be introduced to support the
routing protocol. In this paper we describe the event trig-
gers required for AODV operation, the design possibilities
and the decisions for our Ad hoc On-demand Distance Vec-
tor (AODV) routing protocol implementation, AODV-UCSB.
This paper is meant to aid researchers in developing their
own on-demand ad hoc routing protocols and assist users
in determining the implementation design that best fits their
needs.

1. Introduction

Simulation is an important tool in the development of
mobile ad hoc networks; it provides an excellent environ-
ment to experiment and verify routing protocol correctness.
However, simulation does not guarantee that the protocol
works in practice, because simulators contain assumptions
and simplified models that may not actually reflect real net-
work operation.

After a protocol is thoroughly tested in simulation, an
implementation is the logical next step. A working imple-
mentation is necessary to validate that the routing protocol
specification performs under real conditions. Otherwise, as-
sumptions made by the protocol design cannot be verified
as correct. Additionally, an implementation can be used to

perform testbed and field tests. Eventually it can be used in
a deployed system, such as [1].

Creating a working implementation of an ad hoc routing
protocol is non-trivial and more difficult than developing a
simulation. In simulation, the developer controls the whole
system, which is in effect only a single component. An im-
plementation, on the other hand, needs to interoperate with a
large, complex system. Some components of this system are
the operating system, sockets, and network interfaces. Addi-
tional implementation problems surface because current op-
erating systems are not built to support ad hoc routing pro-
tocols. A number of required events are unsupported; sup-
port for these events must be added. Because these events
encompass many system components, the components and
their interactions must also be explored. For these reasons
it takes significantly more effort to create an ad hoc routing
protocol implementation than a simulation.

Nevertheless, as an important step in studying the AODV
routing protocol [12], we created the AODV-UCSB im-
plementation. We performed experiments and validated the
AODV routing protocol design using our implementation.

Understanding the operation and design process of our
system will help other researchers with the development of
their own ad hoc routing protocols. Identifying the strengths
and weaknesses of our implementation also helps system
designers decide whether our AODV implementation fits
their requirements. Specifically, the contributions of this pa-
per are the following:

• Definition of needed AODV triggers currently unsup-
ported by operating systems.

• Discussion of different design strategies.

• Description of the chosen design for our AODV-UCSB
implementation.

• Presentation of publicly available AODV implementa-
tion designs.

The outline for the remainder of the paper is as follows.
An overview of the key components of our system is pre-
sented in section 2. Section 3 enumerates the currently un-
supported events needed by the AODV routing protocol and



Hello

RREQ

RREP

RERR

Data

S 1 2 D
Hello

RREQ

RREP

RERR

Data

S 1 2 D

Figure 1. AODV Protocol Messaging.

discusses possible techniques for determining them. Sec-
tion 4 discusses other AODV implementations, and finally
section 5 concludes the paper.

2. Background

Before we describe the requirements and design, we
highlight some of the key components of our system. First
we describe the AODV routing protocol and its basic oper-
ation. Next the IEEE 802.11 standard is described. In our
testbed we utilize IEEE 802.11 for the physical, MAC and
link layer of the nodes to accomplish wireless communica-
tion. Finally, we discuss Netfilter, a mechanism inside the
Linux protocol stack that allows packet manipulation.

2.1. AODV Protocol Overview

The AODV [11, 12] routing protocol is a reactive rout-
ing protocol; therefore, routes are determined only when
needed. Figure 1 shows the message exchanges of the
AODV protocol.

Hello messages may be used to detect and monitor links
to neighbors. If Hello messages are used, each active node
periodically broadcasts a Hello message that all its neigh-
bors receive. Because nodes periodically send Hello mes-
sages, if a node fails to receive several Hello messages from
a neighbor, a link break is detected.

When a source has data to transmit to an unknown desti-
nation, it broadcasts a Route Request (RREQ) for that des-
tination. At each intermediate node, when a RREQ is re-
ceived a route to the source is created. If the receiving node
has not received this RREQ before, is not the destination
and does not have a current route to the destination, it re-
broadcasts the RREQ. If the receiving node is the destina-
tion or has a current route to the destination, it generates
a Route Reply (RREP). The RREP is unicast in a hop-by-
hop fashion to the source. As the RREP propagates, each
intermediate node creates a route to the destination. When
the source receives the RREP, it records the route to the des-
tination and can begin sending data. If multiple RREPs are

received by the source, the route with the shortest hop count
is chosen.

As data flows from the source to the destination, each
node along the route updates the timers associated with the
routes to the source and destination, maintaining the routes
in the routing table. If a route is not used for some period of
time, a node cannot be sure whether the route is still valid;
consequently, the node removes the route from its routing
table.

If data is flowing and a link break is detected, a Route
Error (RERR) is sent to the source of the data in a hop-by-
hop fashion. As the RERR propagates towards the source,
each intermediate node invalidates routes to any unreach-
able destinations. When the source of the data receives the
RERR, it invalidates the route and reinitiates route discov-
ery if necessary.

2.2. IEEE 802.11 Standard

The IEEE 802.11 Standard [4] is by far the most widely
deployed wireless LAN protocol. This standard specifies
the physical, MAC and link layer operation we utilize in
our testbed. Multiple physical layer encoding schemes are
defined, each with a different data rate. Part of each trans-
mission uses the lowest most reliable data rate, which is
1 Mbps.

At the MAC layer IEEE 802.11 uses both carrier sensing
and virtual carrier sensing prior to sending data to avoid col-
lisions. Virtual carrier sensing is accomplished through the
use of Request-To-Send (RTS) and Clear-To-Send (CTS)
control packets. When a node has a unicast data packet to
send to its neighbor, it first broadcasts a short RTS control
packet. If the neighbor receives this RTS packet, then it re-
sponds with a CTS packet. If the source node receives the
CTS, it transmits the data packet. Other neighbors of the
source and destination that receive the RTS or CTS packets
defer packet transmissions to avoid collisions by updating
their network allocation vector (NAV). The NAV is used to
perform virtual channel sensing by indicating that the chan-
nel is busy, as shown in Figure 2.

After a destination properly receives a data packet, it
sends an acknowledgment (ACK) to the source. This signi-

Other

Destination

RTSSource

CTS

Data

ACK

RTS-NAV

CTS-NAV

Figure 2. IEEE 802.11 Distributed Coordina-
tion Function.



NF_IP_LOCAL_IN

NF_IP_FORWARD

NF_IP_POST_ROUTING

Outgoing Packets

NF_IP_LOCAL_OUT

Network Interfaces

Local Processes

Routing Decision

Forwarded Packets

Incoming Packets

Outgoing PacketsIncoming Packets

Routing Decision

NF_IP_PRE_ROUTING

Figure 3. Netfilter Hooks.

fies that the packet was correctly received. This procedure
(RTS-CTS-Data-ACK) is called the Distributed Coordina-
tion Function (DCF). For small data packets the RTS and
CTS packets may not be used.

If an ACK (or CTS) is not received by the source within
a short time limit after it sends a data packet (or RTS), the
source will attempt to retransmit the packet up to seven
times. If no ACK (or CTS) is received after multiple retries,
an error is issued by the hardware indicating that a failure
to send has occurred.

Broadcast data packets are handled differently than uni-
cast data packets. Broadcast packets are sent without the
RTS, CTS or ACK control packets. These control messages
are not needed because the data is simultaneously transmit-
ted to all neighboring nodes.

2.3. Netfilter

Netfilter [5] is used by our implementation to identify
many of the events that trigger routing protocol action. Net-
filter consists of a number of hooks at various points inside
the Linux protocol stack. It allows user-defined kernel mod-
ules to register callback functions to these hooks. When a
packet traverses a hook, the packet flows through the user-
defined callback method inside the kernel module.

There are five hooks defined in the Netfilter architecture,
shown as boxes in Figure 3. At the top of the figure there are
two hooks, NF IP LOCAL IN and NF IP LOCAL OUT.
These hooks are for all packets to and from local
processes. At the bottom of the figure there are two hooks,
NF IP PRE ROUTING and NF IP POST ROUTING.
These are for all packets from and to other hosts on the
network. There is also a hook for packets that are forwarded
by the current host, NF IP FORWARD. As an example
of how packets traverse these hooks, suppose a packet is

created by a local process for a remote process. It first
traverses the NF IP LOCAL OUT hook. Next, a routing
decision is performed to see if the packet is bound for the
local host or another host on the network. The packet is
found to be destined for a remote host, and the packet is
passed through the NF IP POST ROUTING hook and then
onto a network interface.

To demonstrate how Netfilter is used in practice, we de-
scribe a simple example that drops all locally created outgo-
ing packets to a particular destination address. First, a ker-
nel module is created that attaches the NF IP LOCAL OUT
Netfilter hook to a callback method written to examine
packets. This callback method is called for each locally
created outgoing packet. If the packet’s destination address
matches the destination address being filtered, then the call-
back method drops the packet. After compiling and loading
the kernel module, any packet locally created and destined
for that particular destination address is dropped. In this
manner a kernel module can examine, drop, discard, modify
or queue packets at any of the defined Netfilter hooks.

3. Implementation Design

The AODV-UCSB implementation was developed on the
Linux 2.4 kernel. A user-space daemon was chosen to keep
as much logic as possible out of the kernel. This is a com-
mon design for routing protocols because code within the
kernel operates with different privileges, and a single error
in the kernel space can cause the whole operating system to
fail.

For the AODV routing daemon to function it must de-
termine when to trigger AODV protocol events. Since the
IP stack was designed for static networks where link dis-
connections are infrequent and packet losses are unreported,
most of these triggers are not readily available. Therefore,
these events must be extrapolated and communicated to the
routing daemon via other means. The events that must be
determined are:

• When to initiate a route request: This is indicated by
a locally generated packet that needs to be sent to a
destination for which a valid route is not known.

• When and how to buffer packets during route discov-
ery: During route discovery packets destined for the
unknown destination should be queued. If a route is
found the packets are be sent.

• When to update the lifetime of an active route: This is
indicated by a packet being received from, sent to or
forwarded to a known destination.

• When to generate a RERR if a valid route does not ex-
ist: If a data packet is received from another host and
there is no known route to the destination, the node



must send a RERR so that the previous hops and the
source halt transmitting data packets along this invalid
route.

• When to generate a RERR during daemon restart: Af-
ter the AODV routing protocol restarts, it must send a
RERR message to other nodes attempting to use it as a
router. This behavior is required in order to ensure no
routing loops occur.

In the remainder of this section we discuss various de-
sign approaches. First, we examine how to determine these
events and where to place the AODV protocol logic. We de-
scribe the advantages and disadvantages of each solution,
and we justify why we chose a user-space daemon with
a small kernel module. In addition, we discuss the impor-
tance of monitoring neighbor connectivity and how it is per-
formed.

3.1. Design Possibilities

There are many ways to design the AODV protocol to
extrapolate the needed AODV events. Possible opportuni-
ties for obtaining the events include:

• Snooping

• Kernel modification

• Netfilter

In the following sections, each of these possibilities is de-
scribed and their respective strengths and weaknesses ex-
amined.

3.1.1. Snooping. One possibility for determining the
needed events is to promiscuously snoop all incoming and
outgoing packets [8]. The code to perform snooping is built
into the kernel and is available to user-space programs, as
shown in Figure 4. The snooping feature can be used to
determine the events listed in section 3. For instance, an
ARP packet is generated when a node does not know the
MAC layer address of the next hop. Using this inference, if

EthX

User Space

Kernel Space

Kernel Space

Hardware

ApplicationsAODV Daemon

Sockets

Snoop

Driver

Figure 4. Snooping Architecture.

EthX

User Space

Kernel Space

Kernel Space

Hardware

ApplicationsAODV Daemon

Driver

Sockets

Link Layer Feedback

Route Used

Route Lookup Failure

Figure 5. Kernel Modification Architecture.

an ARP request packet is seen for an unknown destination
and it is originated by the local host, then a route discovery
needs to be initiated. In a similar manner, all the other
AODV events may be determined by monitoring the
incoming and outgoing packets.

The most important advantage of this solution is it
does not require any code to run in the kernel-space.
Hence this solution allows for simple installation and
execution. The two main disadvantages of this solution
are overhead and dependence on ARP. For example, the
determination of the need for route discovery is indicated
by an ARP request. Since route discovery is initiated
by outgoing ARP packets, these outgoing packets are
unnecessary overhead, and they waste bandwidth. There
are also problems with the dependence on ARP. If the
routing table and ARP cache become out of sync, it
is possible that the routing protocol may not function
properly. For example, if the ARP cache contains an entry
for a particular unknown destination, then an ARP packet
will not be generated for this destination even though it
is not known by the routing daemon. Consequently, route
discovery will not be initiated. For proper operation the
routing protocol must monitor and control the ARP cache
in addition to the IP routing table, because disagreement
between the two can cause the routing protocol to function
improperly.

3.1.2. Kernel Modification. Another possibility to deter-
mine the AODV events is to modify the kernel. Code can
be placed in the kernel to communicate the events listed in
section 3 to an AODV user-space daemon. For example, to
initiate route discovery, code is added in the kernel at the
point where route lookup failures occur. Given this code in
the kernel, if a route lookup failure happens, then a method
is called in the user-space daemon. Figure 5 shows the ar-
chitecture of the AODV daemon and the required support
logic.



EthX

User Space

Kernel Space

Kernel Space

Hardware

ApplicationsAODV Daemon

LIBIPQ

Driver

kaodv Netfilter

Sockets

ip_queue

Figure 6. Netfilter Architecture.

The advantages of this solution are that the events are
explicitly determined and there is no wasted overhead. The
main disadvantages of this solution are user installation and
portability. Installation of the necessary kernel modifica-
tions requires a complete kernel recompilation. This is a
difficult procedure for many users. Also, kernel patches are
often not portable between one kernel version and the next.
Finally, understanding the Linux kernel and network pro-
tocol stack requires examining a significant amount of un-
commented, complex code.

3.1.3. Netfilter. Netfilter is a set of hooks at various points
inside the Linux protocol stack, as described in section 2.3.
Netfilter redirects packet flow through user defined code,
which can examine, drop, discard, modify or queue the
packets for the user-space daemon. Using Netfilter is simi-
lar to the snooping method, described in section 3.1.1; how-
ever, it does not have the disadvantage of unnecessary over-
head or dependence on ARP.

Compared to the other possibilities, this solution has
many strengths. These include that there is no unnecessary
communication, it is highly portable, it is easy to install and
the user-space daemon can determine all the required events
in section 3.

On the other hand, the disadvantage of this solution is
that it requires a kernel module. However, a kernel module
is easier to install than a kernel modification. Since only
the kernel module must be recompiled, there is no need to
recompile the complete kernel. Also, the kernel module can
be loaded or unloaded at any time. Finally, a kernel mod-
ule is more portable than kernel modification because it de-
pends only on the Netfilter interface. This interface does not
change from one kernel version to the next.

Since Netfilter has the fewest and least significant disad-
vantages of the strategies examined, we utilize it in our final
implementation architecture, as shown in Figure 6. Our
implementation uses Netfilter hooks to redirect packets that
arrive from the local machine (NF IP LOCAL OUT),
from other machines (NF IP PRE ROUTING), as

well as all packets that are sent to other machines
(NF IP POST ROUTING). These hooks are used by the
kaodv kernel module. The ip queue module is used to
queue these packets for the user-space daemon. There the
AODV daemon uses libipq to make control decisions about
each packet.

3.2. Determining Local Connectivity

To avoid wasting bandwidth and energy, it is beneficial
for the sender of a data packet to have assurance that the
next hop is within transmission range and is likely to receive
the packet. In order to verify that the next hop is receiving
data packets, local connectivity must be monitored. Noti-
fication of the inability to send data packets to a neighbor
is needed to promptly notify the source that a path is bro-
ken; otherwise, the source continues to send data packets,
wasting resources. The AODV routing protocol uses RERR
messages to notify the source and all nodes on the route to
the source of the broken link. Because other solutions are
not currently available, all current implementations utilize
Hello messages. Unfortunately, Hello messages are known
to perform poorly in a number of common scenarios [3, 10].

4. AODV Implementation Comparison

Recently there have been many AODV routing
protocol implementations, including Mad-hoc [8],
AODV-UCSB [2], AODV-UU [9], Kernel-AODV [7]
and AODV-UIUC [6]. Each implementation was developed
and designed independently; but, they all perform the same
operations and many interoperate.

The first publicly available implementation of AODV
was Mad-hoc. The Mad-hoc implementation resides com-
pletely in user-space and uses the snooping strategy to de-
termine AODV events. Unfortunately, it is known to have
bugs that cause it to fail to perform properly. These prob-
lems are related to its use of ARP. Another feature miss-
ing from the Mad-hoc implementation is proper queuing of
data packets during route discovery. Mad-hoc is no longer
actively researched, supported or available.

The first release of AODV-UCSB used the kernel mod-
ification strategy. This AODV-UCSB implementation was
developed before Netfilter was well documented. We found
that it suffered from some intermittent problems. These
were due to unforeseen dependencies within the kernel that
were brought out by our specific kernel modifications. Af-
ter Netfilter had matured, AODV-UCSB was updated to use
Netfilter. AODV-UCSB uses the Netfilter kernel modules
from the AODV-UUv0.4 release. Using these kernel mod-
ules, all interesting packets are passed to the user-space dae-
mon for processing, as described in section 2.3. In addition



to the base AODV specification, a number of Hello message
options are available. These include requiring reception of
multiple Hello messages before neighbor connectivity is es-
tablished. This avoids creating routes to neighbors based on
a single spurious message reception.

AODV-UU has the same design as AODV-UCSB; it uses
kernel modules to utilize the netfilter hooks. The main
protocol logic resides in a user-space daemon. AODV-UU
has also been ported to the NS-2 simulator. This allows
the real-world implementation code to be run in a simu-
lation environment. The authors have also added a num-
ber of supplemental features, not part of the AODV draft,
to increase the performance of Hello messages [10] (e.g.,
unidirectional link support and a signal quality threshold
for received packets). In addition, AODV-UU also includes
Internet gatewaying and multiple interface support. Since
AODV-UU is well documented and able to run in simula-
tion, a number of patches are available (e.g., multicast and
subnetting) to further extend its functionality.

Kernel-AODV uses Netfilter and all of the routing pro-
tocol logic is placed inside the kernel module; therefore,
no user-space daemon is needed. This improves the perfor-
mance of the implementation, in terms of packet handling,
since no packets are required to traverse from the kernel to
the user-space. This implementation also supports Internet
gatewaying, multiple interfaces and a basic multicast proto-
col. There is also a proc file interface for users to monitor
signal strength to neighbors when certain wireless hardware
is used.

The AODV-UIUC implementation uses Netfilter
wrapped by the Ad hoc Support Library (ASL) [6]. This
design is similar to AODV-UCSB and AODV-UU except it
explicitly separates the routing and forwarding functions.
Routing protocol logic takes place in the user-space
daemon, while packet forwarding is handled in the kernel.
This is efficient because forwarded packets are handled
immediately and fewer packets traverse the kernel to
user-space boundary.

All of the implementations discussed use Hello Mes-
sages to determine local connectivity and detect link breaks.
In addition, all implementations (except Mad-hoc) sup-
port the expanding ring search and local repair optimiza-
tions [11].

5. Conclusion

In this paper we analyzed the design possibilities for an
AODV implementation. We first identified the unsupported
events needed for AODV to perform routing. We then ex-
amined the advantages and disadvantages of three strategies
for determining this information. This analysis supported
our decision to use small kernel modules with a user-space

daemon. Finally, we presented the design of many publicly
available AODV implementations. We hope that the infor-
mation in this paper aids researchers in understanding the
trade-offs in ad hoc routing protocol implementation devel-
opment. Further, the description of the design structure and
additional features of each implementation can assist users
in deciding which implementation best fits their needs.

Acknowledgment

This work is supported in part by Intel Corporation
through a UC Core grant and by a NSF Infrastructure grant
(EIA - 0080134).

References

[1] NovaRoam. http://www.novaroam.com/.
[2] I. D. Chakeres. AODV-UCSB Implementa-

tion from University of California Santa Barbara.
http://moment.cs.ucsb.edu/AODV/aodv.html.

[3] I. D. Chakeres and E. M. Belding-Royer. The Utility of
Hello Messages for Determining Link Connectivity. In Pro-
ceedings of the 5

th International Symposium on Wireless
Personal Multimedia Communications (WPMC), pages 504–
508, Honolulu, Hawaii, October 2002.

[4] IEEE Computer Society. IEEE 802.11 Standard, IEEE Stan-
dard For Information Technology, 1999.

[5] J. Kadlecsik, H. Welte, J. Morris, M. Boucher, and R. Rus-
sell. Netfilter. http://www.netfilter.org/.

[6] V. Kawadia, Y. Zhang, and B. Gupta. System Services for
Implementing Ad-Hoc Routing: Architecture, Implementa-
tion and Experiences. In Proceedings of the 1

st International
Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 99–112, San Francisco, CA, June 2003.

[7] L. Klein-Berndt. Kernel AODV from National
Institute of Standards and Technology (NIST).
http://w3.antd.nist.gov/wctg/aodv kernel/.

[8] F. Lilieblad, O. Mattsson, P. Nylund, D. Ouchterlony, and
A. Roxenhag. Mad-hoc AODV Implementation and Docu-
mentation. http://mad-hoc.flyinglinux.net.

[9] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrm, and C. F.
Tschudin. A Large-scale Testbed for Reproducible Ad hoc
Protocol Evaluations. In IEEE Wireless Communications
and Networking Conference 2002 (WCNC), March 2002.

[10] H. Lundgren, E. Nordstrm, and C. Tschudin. Coping with
Communication Gray Zones in IEEE 802.11b based Ad hoc
Networks. Technical Report 2002-022, Uppsala University
Department of Information Technology, June 2002.

[11] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc On-
Demand Distance Vector (AODV) Routing. RFC 3561, July
2003.

[12] C. E. Perkins and E. M. Royer. The Ad hoc On-Demand
Distance Vector Protocol. In C. E. Perkins, editor, Ad hoc
Networking, pages 173–219. Addison-Wesley, 2000.


