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Abstract—Management of a large scale wireless network, be
it an infrastructured WLAN or a metro-scale mesh network,
presents several challenges. Troubleshooting problems related to
wireless access in these networks requires a comprehensiveset of
metrics and network monitoring data. Current solutions gather
large amounts of data and require significant bandwidth and
processing to offload and analyze this management traffic. As
a result, these solutions are typically not scalable or real-time. To
this end, we propose a multi-tiered approach to wireless network
monitoring that dynamically controls the granularity of da ta
collection based on observed events in the network. Our approach
can achieve significant bandwidth savings and enable real-time
automated management of a wireless network. Our initial analysis
using traces from a large WLAN shows a significant reduction in
the amount of data collected to diagnose problems in a WLAN.

I. I NTRODUCTION

Large scale wireless networks in the form of campus-wide
infrastructure WLANs and metro-scale IEEE 802.11 mesh
networks have proliferated to become an important method of
providing Internet connectivity. These networks consist of hun-
dreds to thousands of APs (or mesh routers in metro-scale mesh
networks) and are used by thousands of users. The management
and troubleshooting of these large wireless networks present
several new challenges compared to traditional Ethernet-based
wired networks.

One of the factors that contributes to the challenges of effec-
tive management of wireless networks is that the performance
of the devices in these wireless networks may be impacted by
entities outside the network, i.e. the surrounding environment or
devices that are not part of the network but share the frequency
spectrum. In addition, the large number of proprietary protocols
and algorithms used by different IEEE 802.11 client vendors
and the interaction among these clients is not well understood.
Finally, unlike wired networks, the physical location of the
devices provides a strong spatial aspect to all data used in
management and troubleshooting of wireless networks.

Due to the inherent uncertainty in the wireless medium,
network administrators require a comprehensive set of data
and metrics to deal with problems in 802.11 networks. The
data include metrics from the 802.11 MAC layer and the PHY
layer, in addition to those from higher layers of the stack. Most
commercial WLANs use a small fraction of these metrics in
order to minimize the data collection and processing overhead.
However, previous research has shown that the diagnosis and
root cause analysis of many network faults requires a complete
trace of the packets in the network [1], [2]. Unfortunately,

the capture and analysis of all data packets is not scalable.
It significantly increases the bandwidth utilization of thewired
backbone connections in a WLAN. Such an approach is infea-
sible in a mesh network where a majority of the routers do
not have a wired backhaul link to transmit the packet capture
traces. Even in situations where the wired connection is able
to meet the high bandwidth requirements, the packet trace
approach has other problems. The processing of the packet
traces is a resource intensive computational task and may
be unsuitable for real-time remediation of network problems.
From our own experience in the development of a real-time
network visualization tool, we found that the speed of metric
collection/generation, rather than the visual rendering of the
data, is the computational bottleneck [3].

For the above reasons, there is a need for a new methodology
of metric collection in a wireless network. This new methodol-
ogy should be bandwidth-efficient, scalable with respect tothe
number of devices in the network, and at the same time provide
a comprehensive set of metrics that can be used to identify
all problems/anomalies in the network. Such a methodology
would facilitate centralized administration of a large network
and also enable the use of tools, such as network visualization,
to monitor the network health in real-time.

We propose an adaptive wireless network monitoring
solution called Antler. The principal feature of Antler is
dynamic and scalable hierarchical collection of metrics
in the wireless network, which is an essential first step
towards effective network management and troubleshooting.
A key observation that guides the design of Antler is that
comprehensive metric collection is required only when there
are problems in the network. A small subset of these metrics
are sufficient when the network performance is satisfactory,
and can be used for coarse identification of potential problems.
We propose a stateful method that intelligently adapts the
metric collection process to capture the most relevant set
of metrics. The goal of our system is to reduce the volume
of data that needs to be collected and processed without
sacrificing the ability to diagnose problems in the network.

A brief overview of the operation of Antler is as follows.
The baseline operation consists of collection of a minimal set
of metrics that indicate the health of the network. These metrics
are constantly monitored and compared against pre-determined
thresholds or triggers. When the baseline metrics indicatethe
possible presence of a problem, the system transitions to the
next tier of data collection, which consists of a more detailed



set of metrics. If the second level metrics indicate a problem
that requires deeper investigation, the system transitions to the
third tier of metric collection, and so on. Alternately, if the
problem can be detected and solved using the second level
metrics, the system eventually returns to the baseline operation
of collecting first tier metrics.

II. RELATED WORK

Network management, health monitoring and fault diagnosis
in WLANs has been an area of active research in recent years.

MOJO [4] is an 802.11 troubleshooting system that outlines
the importance of detailed physical layer metrics for problem
diagnosis and demonstrates that many higher layer symptoms
are manifestations of problems at the PHY layer. Adya et al.
propose modifications to all clients in the network to assistin
troubleshooting [5]. APs in the network act as “software” sen-
sors by capturing wireless metrics and thereby avoid the cost of
deploying special sensors. The authors also propose that clients
associated with APs can act as a conduit for diagnostic traffic
from clients not associated with APs. WiFiProfiler [6] uses a
similar client conduit approach but troubleshooting can bedone
in a peer-peer fashion. However, given the heterogeneous client
devices, instrumenting all of them may not be possible. Our
solution does not assume any assistance from client devices.

Jigsaw [1] is a comprehensive fault diagnosis system
that uses a large set of dedicated wireless radio monitors
to observe and record every transmission in a WLAN. The
radio monitors send the captured packet trace to a central
repository where the packet traces are merged to produce a
single time-synchronized trace that provides a detailed view of
the sequence of events. The Jigsaw system was later extended
to provide automated cross-layered diagnosis of problems [2].
Although Jigsaw provides a complete view of the events in the
network, it requires high overhead in terms of infrastructure.
The dedicated wireless radio monitors require a backhaul
network connection that consumes roughly five times the
actual network traffic [2]. The high bandwidth requirements
for Jigsaw make it unsuitable for a multi-hop mesh network.
Additionally, the scaling properties of the trace merging
process in a larger or heavily-used network are not clear.

In addition to work from the research community, there are
several commercial tools that are designed for this purpose[7],
[8], [9]. The proprietary nature of these tools restricts the
available information to feature-sets. Based on the available
documentation, we hypothesize that some tools use high level
metrics accessed through SNMP MIBS [7] and other tools
such as AirMagnet [9] use special radio monitors deployed
throughout the network to collect packet traces.

III. D ESIGN OFANTLER

In this section we first present the network architecture in
which Antler operates. We then present a brief overview of
the design philosophy, followed by a detailed description of
the design.

A. Network Model

Our proposed solution is designed for an infrastructured
WLAN network. All APs in the WLAN run Antler and
communicate with a central controller. The central controller
performs the following functions: it collects data from the
APs and stores the data in a database; it issues commands to
APs to control the data collection; and it provides data to the
network administrator. The data collected by the controller may
also be accessed by a network health monitoring tool such as
SCUBA [3]. In the future, the collected data can also be used
for automatic rule-based remediation of problems.

We assume the client devices to be autonomous and largely
outside the control of the network administrator. Currently, we
restrict the focus of the metric collection system to the wireless
access part of the network and do not consider metrics from
high layers (e.g. events from DHCP, DNS queries). A majority
of the metrics used by our system are supported by several
commercial APs and can be accessed through SNMP MIBs [7].
We require minimal modification to the APs to collect new
metrics required for our system. In the future we intend to
incorporate statistics collected from cooperative clientdevices,
i.e. devices that can communicate with the Antler controller.

B. Design Philosophy

The basic idea in the design of Antler is to use a few baseline
metrics that capture the general health of the network. When
problems are detected, the system intelligently increasesmetric
collection to capture only those metrics that are needed to
diagnose the root cause of the problem. The principle behind
the design of such a system is that in the general case networks
are in a stable state, during which time it is sufficient to have
a light-weight monitoring system. On the other hand, when
a problem arises, collection of detailed packet level traces in
the area where the problem is detected can facilitate fine-tuned
problem diagnosis.

In the design of Antler, we use the concept of tiers of
metrics, wherein each tier collects a level of detail more than
the previous level. The system goal is to diagnose the network
problem at the lowest possible tier, i.e. with the minimum
level of detail necessary. When diagnosis cannot be made with
certainty at a particular tier, the next tier is triggered tocollect
more metrics. The biggest challenge in designing a multi-tiered
metric collection system is to identify the metrics that are
necessary and sufficient for making decisions at each tier for
the particular problem set that the system should handle. The
classification of metrics into tiers is presented in SectionIII-E.

One design consideration is whether to make the monitoring
system centralized or distributed. The intelligence to transition
the metric collection among the different tiers can be either at
the central controller or at the APs. The latter option provides
a distributed approach that may scale better as the size of the
network increases. The metric collection process would also be
more responsive to local events. Further, a distributed approach
would reduce all monitoring traffic. On the other hand, the
central controller has a global view of the network and may be
able to correlate symptoms of nearby APs, which we plan to



Fig. 1. Architecture of Antler.

explore in an extended version of this work. Additionally, the
multi-tiered metric collection scheme reduces the amount of
data to process and thus, if done carefully, a central controller
will not be overwhelmed with data. Therefore, we opt for
the centralized approach to take advantage of the central
controller’s ability of see a global view of the network.

Next we describe the system architecture of Antler, followed
by the classification of metrics into tiers and the rules/triggers
that govern the transition of the metric collection among the
different tiers.

C. Antler Architecture

Figure 1 illustrates the architecture of the Antler system at
the central controller. As seen from the figure, the system is
comprised of two primary components - the monitoring engine
and the analysis engine. The monitoring engine takes as input
a list of metrics to collect at each AP. The list of metrics to
collect depends on the current metric collection tier for the
particular AP and may differ among the various APs in the
network. The monitoring engine interfaces with the APs to
collect the corresponding metrics (not shown in figure). The
collected metrics are output to the analysis engine and also
stored at a central database.

The analysis engine is responsible for generating the list
of metrics to collect at each AP. For this purpose, the data
collected via the monitoring engine is processed using a
repository of rules. The rules are specifications of network
conditions or events that trigger a transition in the metric
collection tiers. Each rule represents the possible presence of
a problem in the network and is usually described in terms
of conditional statements that compare current metric values
against pre-determined threshold values. Since each rule is
inherently associated with a tier of metric collection, theset of
rules forms a structure similar to a decision tree. Section III-E
provides a detailed discussion of the rules and the decision
tree. A second output of the analysis engine is the diagnosis
of faults in the network. Based on the problem hypothesis
presented by the rules and the corresponding metrics, the
analysis engine can perform root cause analysis in the network
and suggest potential remedial actions.

D. Metric Selection

There are multiple metrics that can be used to understand
the health of a wireless network: throughput, airtime, control
overhead, loss rates, retransmissions, data rate, and received
signal strength are all good candidates. When a change occurs

in the network condition, it is often reflected in one or more
of these metrics.

To select a baseline set of metrics, we consider the typical
goals for deployment of WLANs [10]. Broadly, there are two
goals that the network tries to achieve: 1) provide connectivity
to clients within the network’s coverage area, and 2) ensure
a minimum throughput to all the connected clients (up to the
number of clients that the network is designed to support).
These two metrics lead us to two of the baseline metrics:
maximum client Overhead Index (Omax) and minimum client
throughput (Tmin). The Overhead Index is defined as the ratio
of control and management traffic to data traffic (in bytes) [11].
When a client has connectivity problems,Omax will be high.
The second baseline metric,Tmin, tracks the performance
of connected clients. When a client obtains low throughput,
Tmin will be low.1 In addition to the above two metrics, we
also collect the airtime metric (A) for each AP. Airtime, also
called channel utilization, is the fraction of time for which the
channel is busy and represents the degree of network activity
in the neighborhood of the AP [12]. As we show later in the
paper, this metric provides valuable supplementary information
that helps the decision tree of the analysis engine. If one
of the objectives of the network is to support Voice-over-IP
applications, then low packet delays is another goal of the
network. In such networks, packet delay would be the fourth
baseline metric. In this paper we consider WLANs that are
unaware of specific traffic type.

We believe that these metrics are sufficient at the high level
to detect a network problem. Three of the most important prob-
lems related to wireless network access are connectivity prob-
lems, performance problems, and authentication problems [5].
Connectivity and authentication problems result in highOmax,
whereas performance problems result in a lowTmin. While
performance problems manifest in a variety of other metrics,
such as round trip time (RTT), data rates, and signal strength,
these metrics can be used to provide a deeper understanding for
the cause of low throughput and thus are not first tier metrics.

E. Decision Tree

The analysis engine (AE) of Antler, along with the set of
rules that specify network conditions, forms a decision tree.
Each rule has two parts. The first part is the trigger, which
checks for a particular hypothesis of problematic network con-
dition. The trigger is expressed in terms of a combination ofthe
collected metrics compared against predefined thresholds (e.g.
Tmin < Tthreshold). When triggered, the system transitions
to the next tier of metric collection to collect more data for
finer problem diagnosis. The second part of a rule is the list
of metrics to collect in this next tier. Note that a rule in the
decision tree at tiern includes all the rules along the path in the
tree at tiersn − 1, n − 2, . . . , 1. Figure 2 provides a graphical
representation of the decision tree. We explain the processof
choosing thresholds later in this section.

1In order to distinguish clients with little or no offered load, we only consider
active clients (defined by a minimum activity threshold in bytes transferred)
for computation ofTmin .



Fig. 2. Multi-tiered metric collection decision tree implemented in the analysis
engine. The numbers in circles at the top indicate the tier ofmetric collection.
White boxes represent the metrics collected at each tier. Arrows indicate the
triggers used to transition between tiers. Gray boxes indicate the fault diagnosis.

At the first tier of collection, each AP reports the minimum
throughput (Tmin), maximum overhead (Omax) and overall
airtime (A). During each time interval, the AE compares the
reported values against thresholds defined as a part of the rules.
At this tier, we ensure that all connected clients are obtaining a
minimum throughput and not experiencing connectivity issues,
and the network is not nearing the congestion point. To
facilitate this, there is a rule to check each of these metrics. The
throughput check fails if the throughput of any active client is
lower than the threshold, i.e. the minimum throughput specified
by the network goal. The overhead check fails if any client
(not necessarily active) has an overhead index higher than 100.
Finally, the airtime check fails if the overall channel utilization
reported by an AP is above 60% [12]. If any of these thresholds
are exceeded, the second tier of metric collection is initiated.

In the second tier of metric collection, we obtain additional
metrics that help troubleshoot the cause of performance or con-
nectivity issues. To this end, we obtain the per-client statistics
of all clients who do not satisfy the threshold condition. The
reasons for performance issues could be manyfold: poor link
quality, congestion, high losses, interference from neighboring
networks or non-802.11 sources, and so on. In order to focus
on the problem, we collect per-client airtimesAi, packet
loss ratesLi and overhead indicesOi. Per-client airtimeAi

enables us to check for two problems. First, if the sum ofAi

for all clients is less than the overall airtimeA reported by
the AP, this indicates external interference, and may require
the administrator to perform channel-selection. Second, if the
overall airtime is high, we need to check whether this is because
of high congestion or poor link quality. Performance issuescan
also manifest in the form of lossy links. We consider a link as
lossy if the loss rates exceed 5% [5]. If the loss threshold is
exceeded at the second tier, it could either be because of packet
collisions due to excess network congestion or a poor link.

Depending on the tier 2 metric values and triggers that are

activated, the set of tier 3 metrics is selected. High airtime
requires that we collect both transmission data rates (Ri) and
received signal strength (Si). Low signal strength is an indica-
tion of poor link quality. The administrator could increasethe
transmit power of the AP to resolve the issue. Low data rates
in the presence of high signal strength indicate high congestion
and the administrator could resort to admission control or load
balancing to remedy the situation. On the other hand, low data
rates along with low signal strength indicates poor link quality.
If one client is consuming a disproportionate amount of airtime
because of a poor link, the administrator could rate limit the
client to resolve this condition. A lossy link in tier 2, however,
necessitates only signal strength measurements at tier 3 to
distinguish between losses due to congestion and losses dueto
poor signal strength. Finally, high overhead at tier 2 requires the
collection of per-client management statistics in tier 3 todistin-
guish between connectivity issues. A large number of associa-
tion responses or reassociation responses from the AP indicates
that clients are not able to sustain a connection. This could
be because of high congestion [11] wherein clients are not
able to successfully associate, or they are flip-flopping between
APs due to high losses. On the other hand, a large number
of authentication or deauthentication messages indicatesthat
the client authentication problems are either due to incorrect
network keys or MAC address whitelisting or blacklisting.

F. Choosing Parameters

We now discuss the selection of the two parameters that in-
fluence Antler’s performance: threshold values and periodicity
of monitoring.

Thresholds: An important aspect of the decision tree is the
choice of thresholds used in the triggers. We derive some
thresholds from the network goals, e.g. minimum throughput
for a connected client is obtained from the network deployment
goal. Previous research guides us in the choice of some
thresholds. For example, we choose an airtime threshold of
60% as this represents a moderately-congested network and
allows the detection of problems before the network becomes
highly-congested (airtime> 85%) [12]. To detect connectivity
problems, we set the overhead index at the first tier to be
a very high value, indicating that clients have not been able
to transmit data packets. Yang and Vaidya list the maximum
achievable data rate for a given signal strength [13]; we use
this as a guideline. We consider a link as lossy of the packet
loss rate exceeds 5% [5]. For other metrics we plan to analyze
network traces from actual networks2 and simulations. We
consider traces that contain problem scenarios as well as those
that exhibit normal behavior. In this manner we are able to
determine suitable threshold values for the metrics.

False Positives and False Negatives:A desirable property of
Antler is to have minimal false negatives in problem identifi-
cation, i.e. we do not want to miss detection of a fault. On the
other hand, too many false positives (i.e. transitions to collect
detailed metrics when there are no problems in reality) reduce

2http://www.crawdad.org



Fig. 3. Metrics taken from a 10 minute trace at the 67th IETF meeting.

the effectiveness of the system in saving bandwidth. These
considerations impact the choice of metric thresholds. For
example, consider the airtime metricA where a high value of
A might indicate a problem. A low threshold valueAthreshold

leads to many false positives and frequent collection of detailed
metrics. On the other hand, a high value ofAthreshold may
cause the system to miss faulty conditions.

Periodicity: In contrast to a system such a Jigsaw [1] that
captures every packet transmission, Antler works mainly on
a statistical view of the network. Thus Antler may be unable
to capture transient network conditions. Instead it focuses on
more persistent problems. The response time of Antler depends
on the time granularity of metric collection. A smaller period of
collection makes the system more responsive to temporary con-
ditions in the network but increases the bandwidth requirements
and the workload of the central controller. A large window
saves bandwidth but may cause the system to miss some
network faults. In our initial design we chose to collect metrics
every five seconds. We believe this value provides a balance
between transient fault detection and system responsiveness.

IV. EVALUATION

There are two important aspects in the evaluation of Antler.
First, in Section IV-A, we show that the decision tree indeed
leads us to the correct conclusions about the network problems.
In order to diagnose a fault correctly, we need to make the
correct choice of metric selection at each tier. Second, we
show the benefits of Antler in terms of bandwidth savings in
Section IV-B.

A. Design Verification

In order to verify the feasibility of multi-tiered approach
to fault detection, we analyze the traces we collected from
the 67

th IETF meeting held in November 2006 [14]. The
network consisted of over 100 APs on both 802.11a and
802.11g frequencies, and was used by more than 1200 users
with periods of high network utilization. Our analysis of the
traces shows that the network suffered from high interference
and loss rates, making it suitable to analyze the correctness of
our algorithm in identifying the specified problems [14]. An
example 10 minute trace is shown in Figure 3.

The figure represents the metric values for a 10 minute
sample of the plenary session3. For the purpose of analysis,
we fix the expected network throughput at 50Kbps. The low
threshold is because of the high client-AP ratio, wherein we
observed a single AP could attempt to serve as many as 100
simultaneous clients. At about seven minutes into the trace,
we see that the throughput decreases below the minimum
threshold. In a live network with Antler deployed, this would
trigger the collection of second tier metrics: per-client airtime,
per-client loss and per-client overhead index for the client that
went below the threshold. If we examine these tier 2 metrics for
the client whose throughput went below the threshold, for the
same 10 minute period, we see that the client overhead does not
show much variation. However, the client airtime and loss start
to increase around the time throughput decreased. The increase
in loss rate could be due to either the client obtaining low
transmission rates or suffering from congestion, both of which
lead to the increased airtime. The high loss would trigger the
collection of the tier 3 metric, the client’s signal strength. The
RSS values plotted in the figure indicate that the AP received
packets with almost no variation in signal strength. Constant
signal strength coupled with high loss clearly indicates that the
network was suffering from congestion. This is further verified
by plotting the retransmission rate of the client (Re-Tx).

We draw two conclusions from Figure 3. The first is that the
hierarchy of metrics that we described in Section III is plausible
and works in a live network. This has encouraged us to further
explore how we could map common wireless problems into the
hierarchical decision tree. The second conclusion we draw is
that we are able to confirm our hypothesis that only a subset
of metrics is required to diagnose a network problem. Our al-
gorithm provides the most useful set of metrics to be analyzed.
Apart from reducing bandwidth demand, our system is the first
step towards automated network management and recovery.

B. Efficiency

Having seen an illustration of how the decision tree can be
used to detect network problems and discover their root cause,
we now evaluate how often Antler is able to correctly diagnose
network problems. For this purpose, we use the traces from
the entire four hour plenary session of the IETF meeting. We
compare our hierarchical approach with a naı̈ve trace-driven

3In the plenary session, approximately 600 IETF attendees gathered for four
hours in one room equipped with about eight 802.11g APs



approach in which the AP reports the entire set of metrics
at every monitoring interval. We first use the trace-driven
approach to detect all instances of potential network problems
and compare this with the number of instances detected by
Antler. Ideally, our system should detect all problems thatare
detected by the trace-driven approach, but with a much lower
overall bandwidth requirement. For fairness in evaluation, our
definition of a network problem remains consistent in the trace-
driven approach and Antler: low throughput, high overhead or
high airtime. The success of Antler depends largely on the
thresholds chosen for the metrics and the periodicity of the
detection engine. We use the values listed in Section III-F.

Faults Monitoring False
detected data (Mb) positives

Trace-driven 97 65.7 N.A.

Antler 84 15.4 9

TABLE I
COMPARISON OFANTLER WITH A TRACE-DRIVEN APPROACH.

Table I shows the comparison results of Antler with a
trace-driven approach. The main difference between the two
approaches is in the amount of information available at any
point of time to make a decision. In the trace-driven approach,
we have access to all the metrics, whereas in the Antler system,
we have only a subset of the metrics. Hence, in the first case we
assume a fault that can be detected can also be diagnosed in one
cycle of metric collection. On the other hand, Antler requires
more than one collection cycle to diagnose a fault. We simu-
lated the transitions among the different tiers based on events
observed in the trace. We see that Antler was able to diagnose
85% of the faults using only about 25% of the bandwidth used
in the trace-driven approach. A false positive is generatedwhen
a next tier of metric collection is triggered, but the next tier
reveals no problems. We trigger data collection needlesslyonly
for 9 instances in the entire four hour trace, which translates to
about 9% error. These results are encouraging and we would
like to further explore the sensitivity of the system to various
thresholds to further improve the fault detection capability.

V. CONCLUSION AND FUTURE WORK

Wireless network management is challenging due to the lack
of holistic network view. This work is a first step in automating
wireless network monitoring and management. In this paper,
we demonstrated the need for a dynamic and adaptive metric
collection system. We described the design of the multi-tiered
metric collection system of Antler. Our initial evaluationof
the design indicated a significant reduction (about75%) in the
bandwidth requirement for network monitoring.

The promising results encourage us toward the development
and deployment of Antler on a production WLAN with active
usage. We hope to gain a better understanding of the perfor-
mance of Antler through this deployment. In particular, we
would like to explore the degree of reduction in monitoring
data and the effectiveness of problem identification. Usage
in a production network would also provide us with a better

understanding of the metrics relevant to each network faultand
the thresholds to use for these metrics.

Antler currently focuses on automated multi-tiered metric
collection to assist in fault diagnosis. This can be used to bring
the network administrator’s attention to problems in real-time
and better facilitate quick problem resolution. As part of our
future work, we would like to augment Antler with automated
remedial actions. In other words, the system would identify
the cause of a problem and use an appropriate preconfigured
solution to rectify the problem.

Another important goal and future work of Antler is to be
able to perform network health monitoring in a multi-hop mesh
network. Mesh networks are particularly challenging because
they use wireless links for backhaul connectivity. In such
networks, excessive monitoring-related traffic can consume
valuable bandwidth and be detrimental to the performance
of the network. Additionally, the mesh routers have to deal
with an extensive set of metrics that characterize the multi-hop
connectivity, in addition to the traditional WLAN-like metrics
related to client access. For precisely these reasons, we believe
an Antler-like hierarchical metric collection method would be
particularly well-suited for mesh networks.
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eren, S. Savage, and G. M. Voelker, “Automating Cross-LayerDiagnosis
of Enterprise Wireless Networks,” inProc. of SIGCOMM, Kyoto, Japan,
Aug. 2007.

[3] A. Jardosh, P. Suwannatat, T. Hollerer, E. Belding, and K. Almeroth,
“SCUBA: Focus and Context for Real-time Mesh Network HealthDiag-
nosis,” in To appear in Proc. of PAM, Cleveland, OH, Apr. 2008.

[4] A. Sheth, C. Doerr, D. Grunwald, R. Han, and D. Sicker, “MOJO:
A Distributed Physical Layer Anomaly Detection System for 802.11
WLANs,” in Proc. of MobiSys, Uppsala, Sweden, Jun. 2006.

[5] A. Adya, P. Bahl, R. Chandra, and L. Qiu, “Architecture and Techniques
for Diagnosing Faults in IEEE 802.11 Infrastructure Networks,” in Proc.
of MobiCom, Philadelphia, PA, Sep. 2004.

[6] R. Chandra, V. Padmanabhan, and M. Zhang, “WiFiProfiler:Cooperative
Diagnosis in Wireless LANs,” inProc. of MobiSys, Uppsala, Sweden,
Jun. 2006.

[7] (2008, Feb.) Netdisco - Network Discovery and Management. [Online].
Available: http://www.netdisco.org/

[8] (2008, Feb.) AirWave Management Platform. [Online]. Available:
http://www.airwave.com/

[9] (2008, Feb.) AirMagnet. [Online]. Available: http://www.airmagnet.com/
[10] (2005, Jul.) Meru Networks White Paper. [Online].

Available: http://www.merunetworks.com/form.php?typ=/technology/
documents.php&file=MeruRS WP1-0705.pdf

[11] A. P. Jardosh, K. Mittal, K. N. Ramachandran, E. M. Belding, and K. C.
Almeroth, “IQU: Practical Queue-based User Association Management
for WLANs,” in Proc. of MobiCom, Los Angeles, CA, Sep. 2006.

[12] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E.M. Belding-
Royer, “Understanding Congestion in IEEE 802.11b WirelessNetworks,”
in Proc. of IMC, Berkeley, CA, Oct. 2005.

[13] X. Yang and N. Vaidya, “On the Physical Carrier Sense in Wireless Ad
Hoc Networks,” inProc. of INFOCOM, Miami, FL, Mar 2005.

[14] R. Raghavendra, E. M. Belding, K. Papagiannaki, and K. C. Almeroth,
“Understanding Handoffs in Large IEEE 802.11 Wireless Networks,” in
Proc. of IMC, San Diego, CA, Oct. 2007.


