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Abstract— Initial work in ad hoc routing has considered only the
problem of providing efficient mechanisms for finding paths in very
dynamic networks, without considering security. Because of this,
there are a number of attacks that can be used to manipulate
the routing in an ad hoc network. In this paper, we describe
these threats, specifically showing their effects on AODV and
DSR. Our protocol, named Authenticated Routing for Ad hoc
Networks (ARAN), uses public-key cryptographic mechanisms to
defeat all identified attacks. We detail how ARAN can secure routing
in environments where nodes are authorized to participate but
untrusted to cooperate, as well as environments where participants
do not need to be authorized to participate. Through both simulation
and experimentation with our publicly-available implementation,
we characterize and evaluate ARAN and show that it is able to
effectively and efficiently discover secure routes within an ad hoc
network.

I. INTRODUCTION

Securing protocols for mobile ad hoc networks presents
unique challenges due to characteristics such as lack of pre-
deployed infrastructure, centralized policy and control. In this
paper, we make a number of contributions to the design of
secure ad hoc routing protocols1. First, we describe exploits
that are possible against ad hoc routing protocols. We show
specifically that two protocols that are under consideration
by the IETF for standardization, AODV [9] and DSR [10],
although efficient in terms of network performance, are replete
with security flaws.

Second, we define and distinguish the heterogeneous envi-
ronments that make use of ad hoc routing and differ in their
assumed pre-deployment and security requirements. This ap-
proach is important because satisfying a tighter set of security
requirements than an application requires is unwarranted and
wasteful of resources.

Third, we propose a secure routing protocol, Authenticated
Routing for Ad hoc Networks (ARAN), that detects and
protects against malicious actions by third parties and peers.
ARAN introduces authentication, message integrity, and non-
repudiation to routing in an ad hoc environment as a part of
a minimal security policy.

We detail how ARAN can be used in two environments:
where mobile users are federated and can be pre-certified (e.g.,
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on a campus) though remain untrusted; and where they are
unknown to each other and cannot be pre-certified (e.g., a
“rooftop” access point). To our knowledge, ARAN is the first
proposal for securing ad hoc routing for rooftop networks.

We analyze the security of ARAN and evaluate its net-
work performance through measurement of both our publicly-
available implementation and extensive simulations. We find
that although there is a greater performance cost to ARAN as
compared to DSR or AODV, the increase in cost is minimal
and outweighed by the increased security.

This paper is organized as follows. Section II presents
an overview of recent work on ad hoc network security.
Section III describes the security exploits possible in ad hoc
routing protocols. Three ad hoc environments and the security
requirements of any ad hoc network are defined in Section IV.
Section V presents our secure ad hoc routing protocol, ARAN.
A security analysis of ARAN is provided in Section VI, while
section VII evaluates ARAN through implementation and
simulations. Finally, section VIII offers concluding remarks.

II. BACKGROUND

Several proposed ad hoc routing protocols, for example [9],
[10], [11], [12], [13], have security vulnerabilities and ex-
posures that easily allow for routing attacks. While these
vulnerabilities are common to many protocols, in this paper
we focus on two protocols that are under consideration by the
IETF for standardization: AODV [9] and DSR [10].

The fundamental differences between ad hoc networks
and standard IP networks necessitate the development of
new security services. This point has been recognized, and
several researchers have examined security problems in ad
hoc networks. Numerous solutions have been proposed for
providing a secure and reliable certification authority in ad
hoc networks [14], [15], [16], [17]. Another problem that has
received attention is that of stimulating cooperation among
nodes in an ad hoc network and addressing malicious packet
dropping [18], [19], [20], [21], [22], [23]. Strategies used
include detecting and punishing non-cooperating nodes, re-
warding nodes for forwarding packets, concealing the true
destination of packets from intermediate nodes, and using
redundant data transmissions over multiple paths.

The issue of secure routing in particular has received
significant attention. Hu et al. have proposed Ariadne [6], a
secure version of DSR. Ariadne can use pre-deployed pairwise
symmetric keys or pre-deployed asymmetric cryptography for
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authentication. The former is more efficient, but requires
shared secrets between communicating nodes, which may not
always be feasible to establish. A third option for Ariadne
is the TESLA authentication scheme, which is also based on
asymmetric encryption, thus requiring a certification authority
or pre-deployed keys. TESLA requires that packets are delayed
by the longest RTT in the network before they are sent (thus
route creation incurs this delay in both request and response
phases).

Chu et al. developed a secure proactive routing protocol
based on DSDV [13] called SEAD [24], which is also based
on public-key signed hash chains.

SAODV [25], an early attempt to secure the AODV routing
protocol, has numerous security vulnerabilities. For instance,
it allows a malicious intermediate node to spoof its identity,
illegally modify the hop count on route request messages, and
fabricate route error messages.

The use of security parameters, such as the trust level of
a node in a hierarchical organization, as a routing metric is
proposed in [26]. To secure the scheme, the authors suggest
that all nodes at the same level of trust should share a
common secret. This is not very practical, and has many key-
management issues.

In an alternative scheme, Papadimitratos et al. [27] propose
the Secure Routing Protocol (SRP); however, this is vulnerable
to attacks such as fabricated route error messages. Routing
security in sensor networks has been analyzed in [28].

The wormhole attack against secure ad hoc routing proto-
cols is studied and a solution is presented in [29], though
implementing the solution requires specialized hardware to
achieve a high degree of clock synchronization. Awerbuch
et al. design a flooding-free reactive routing protocol based
on Swarm Intelligence and the Distributed Reinforcement
Learning paradigm [30], which is secure against a dynamic
Byzantine adversarial model. Finally, intrusion detection tech-
niques for ad hoc networks have been studied [31], [32].

Our work differs from other work in that we do not assume
any hardware modifications or synchronized clocks, and only
minimal advance keying from a trusted authority. We also
account for the costs of distributing cryptographic material
instead of assuming it is pre-deployed.

In comparison against related work (e.g.,[6], [7]), ARAN
has higher computational costs at each node, which has im-
plications for power costs and latency. However, the dominant
energy cost of wireless networking on handheld devices is
the idle system with an idle radio [3]; the costs of ARAN’s
cryptography represent a small price in comparison. ARAN’s
computational delays are comparable to the mandatory authen-
tication delays required by TESLA [7], a hash-chain-based
approach to security. TESLA mandates delays equal to twice
the diameter RTT of the network in addition to processing
delays, even if the path is between direct neighbors.

III. EXPLOITS AGAINST EXISTING
PROTOCOLS

Several popular ad hoc routing protocols allow for many dif-
ferent types of attacks. In this section, we classify and briefly

Attack AODV DSR ARAN
Remote redirection

modif. of seq. numbers Yes No No
modif. of hop counts Yes No No
modif. of source routes No Yes No
tunneling Yes Yes Yes, but only

to lengthen
path

Spoofing Yes Yes No
Fabrication

fabr. of error messages Yes Yes Yes, but non-
repudiable

fabr. of source routes No Yes No
(cache poisoning)

TABLE I
VULNERABILITIES OF AODV, DSR, AND ARAN.

describe modification, impersonation, and fabrication exploits
against ad hoc routing protocols. Detailed descriptions of the
attacks can be found in our previous work [8]. In addition,
several attacks are possible in the forwarding operation. Data
packets can be dropped, replayed, or redirected. In Section V,
we propose a protocol that is not exploitable in these ways.

Our focus is on vulnerabilities and exposures that result
from the specification of the ad hoc routing protocol, and
not from problems with IEEE 802.11. Additionally, denial-of-
service attacks based on non-cooperation and packet dropping,
or resource depletion by aggressive route request flooding, are
possible in all ad hoc routing protocols. We do not deal with
the issue of ensuring protocol compliance, and look only at
security problems arising from manipulation of the network
routing.

The attacks presented below are described in terms of the
AODV and DSR protocols, which we use as representatives
of ad hoc on-demand protocols. Table I provides a summary
of each protocol’s vulnerability to the following exploits.

A. Attacks Using Modification

Malicious nodes can cause redirection of network traffic
and DoS attacks by altering control message fields or by
forwarding routing messages with falsified values. Below we
briefly describe several modification attacks against AODV
and DSR.

1) Redirection by Modified Route Sequence Numbers:
Protocols such as AODV and DSDV assign monotonically
increasing sequence numbers to routes towards specific desti-
nations. A route with a higher sequence number is preferred
over one with a lower sequence number. Thus, in AODV, any
node may divert traffic through itself by advertising a route
to a node with a destination sequence num greater than the
authentic value.

2) Redirection with Modified Hop Counts: In AODV, a
redirection attack is possible by modification of the hop count
field in route discovery messages. When routing decisions
cannot be made by other metrics, AODV uses the hop count
field to determine a shortest path. Malicious nodes can increase
the chances they are included on a newly created route by
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resetting the hop count field of the RREQ to zero. Similarly,
by setting the hop count field of the RREQ to infinity, created
routes will tend to not include the malicious node. Such
an attack is most threatening when combined with spoofing,
described in Section III-B.

3) Denial-of-service with Modified Source Routes: DSR
utilizes source routes, thereby explicitly stating routes in data
packets. These routes lack any integrity checks and a simple
denial-of-service attack can be launched in DSR by altering
the source routes in packet headers, such that the packet can
no longer be delivered to the destination.

4) Tunneling: Ad hoc networks have an implicit assump-
tion that any node can be located adjacent to any other node.
A tunneling attack is where two or more nodes collaborate to
encapsulate and exchange messages along existing data paths.
Such collaborating nodes can pretend to be neighbors, and
falsely represent the length of available paths by preventing
honest intermediate nodes from correctly incrementing the
path length metric.

It is also possible that instead of tunneling through existing
multi-hop routes, the malicious nodes can use a long-range
directional wireless link or a wired link between them. Such a
link gives the attackers an unfair advantage towards occurring
on the shortest delay route between a source and destination.
This has been referred to as the wormhole attack in recent liter-
ature [6], [29]. However, if the malicious nodes truly lie on the
shortest delay path, it could be argued that the selection of this
path is not a subversion of the routing protocol. A mechanism
for defending against wormhole attacks is presented in [29].

B. Attacks Using Impersonation

Spoofing occurs when a node misrepresents its identity
in the network, such as by altering its MAC or IP address
in outgoing packets, and is readily combined with other
attacks, such as those based on modification. The advantage
of spoofing is that the attack cannot be traced back to the
malicious node.

C. Attacks Using Fabrication

Fabrication attacks involve the generation of false routing
messages. Such attacks can be difficult to verify as invalid
constructs, especially in the case of fabricated error messages
that claim a neighbor cannot be contacted.

1) Falsifying Route Errors in AODV and DSR: In AODV
and DSR, if the destination node or an intermediate node
along an active path moves, the node upstream of the link
break broadcasts a route error message to all active upstream
neighbors. This message causes the corresponding route to be
invalidated in all upstream nodes. A denial-of-service attack
can be launched by continually sending route error messages
indicating a broken link on the route, thereby preventing the
source from communicating with the destination.

2) Route Cache Poisoning in DSR: In DSR, a node over-
hearing any packet may add the routing information contained
in that packet’s header to its own route cache, even if that
node is not on the path from source to destination. An attacker
could easily exploit this method of learning routes and poison

route caches by transmitting packets containing invalid routes
in their headers.

IV. SECURITY REQUIREMENTS OF
AD HOC NETWORKS

Applications for ad hoc networks include military opera-
tions, emergency rescue missions, and simple provisioning
of wireless network access, such as at a conference or in a
classroom. In this section, we classify ad hoc networks into
three distinct environments that differ in security needs and
assumed pre-deployment. These classes are defined because it
is difficult to construct a single secure ad hoc routing protocol
to suit the needs of many heterogeneous wireless applications.
The lower security requirements of some environments do
not justify use of costly protocols that satisfy stricter security
policies. The environments defined in this section enable us
to clearly state where we expect to apply our secure protocol.

A good secure routing algorithm prevents each of the ex-
ploits presented in Section III; it must ensure that no node can
prevent successful route discovery and maintenance between
any other nodes other than by non-participation.

We define a set of three discrete ad hoc wireless envi-
ronments: open, managed-open, and managed-hostile. These
differ not only in the level of security needed, but also in that
some have opportunity for exchange of security parameters
before the nodes are deployed.

In sum, all secure ad hoc routing protocols must satisfy
the following requirements to ensure that path discovery from
source to destination functions correctly in the presence of
malicious adversaries: (1) Route signaling cannot be spoofed;
(2) Fabricated routing messages cannot be injected into the
network; (3) Routing messages cannot be altered in transit,
except according to the normal functionality of the routing
protocol; (4) Routing loops cannot be formed through mali-
cious action; (5) Routes cannot be redirected from the shortest
path by malicious action.

These requirements help define an open environment along
with the following distinction: all nodes can be considered
authorized. This scenario might exist, for example, for a
user walking through an urban environment or driving on a
highway.

Managed-open environments are accordingly distinguished
by an additional requirement: (6) Unauthorized nodes must
be excluded from route computation and discovery. This
requirement does not preclude the fact that authenticated peers
may act maliciously as well. Additionally, we assume that
the managed-open environment has the opportunity for pre-
deployment or exchange of public keys, session keys, or
certificates. We expect mobile nodes in this environment reside
within some common context or geographic proximity. Such
an ad hoc network might be formed by peers at a conference,
or students on a campus.

We define a managed-hostile environment to have require-
ments listed above as well as the following: (7) The network
topology must neither be exposed to adversaries nor to au-
thorized nodes by the routing messages. A managed-hostile
environment is formed, for example, by military nodes in a
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KA+ Public key of node A.
KA− Private key of node A.
KAB Symmetric key shared by nodes A and B.
{d}KA+ Encryption of data d with key KA+.
[d]KA− Data d digitally signed by node A.
certA Certificate belonging to node A.
e Certificate expiration time.
NA Nonce issued by node A.
IPA IP address of node A.
RDP Route Discovery Packet identifier.
REP REPly packet identifier.
t timestamp.

TABLE II
TABLE OF VARIABLES AND NOTATION.

battle environment, or perhaps by emergency response crews
in a disaster area. In such an environment, nodes are deployed
by a common source. Consequently, there may be opportunity
for pre-deployed exchange of security parameters. The distin-
guishing security threat of the managed-hostile environment is
that every node is vulnerable to physical capture and take-over
of equipment, where hostile entities can then pose as friendly
entities at a compromised node. Therefore, exposure of node
location from the routing protocol messages is not desirable,
else adversaries may gain an opportunity to annihilate users.

In the next section we present the ARAN protocol, which
meets the needs of the managed-open and open environments.
It does not provide a solution to the managed-hostile environ-
ment because it exposes the routing topology.

V. AUTHENTICATED ROUTING FOR
AD HOC NETWORKS

In this section, we detail the operation of ARAN. ARAN
uses cryptographic certificates to prevent most of the attacks
presented in Section III and detect erratic behavior.

ARAN consists of a preliminary certification process fol-
lowed by a route instantiation process that guarantees end-
to-end authentication. The protocol is simple compared to
most non-secured ad hoc routing protocols, and does not
include routing optimizations present in the latter. It should
be noted that these optimizations are the chief cause of most
exploits listed in Section III. Route discovery in ARAN is
accomplished by a broadcast route discovery message from
a source node that is replied to by the destination node.
The routing messages are authenticated end-to-end and only
authorized nodes participate at each hop between source and
destination.

A. Certification of Authorized Nodes

ARAN uses cryptographic certificates to bring authenti-
cation, message-integrity and non-repudiation to the route
discovery process. ARAN therefore requires the use of a
trusted certificate server T , whose public key is known to
all valid nodes (or multiple servers may be used [17]). Nodes
use these certificates to authenticate themselves to other nodes
during the exchange of routing messages. The use of public

keys and certificates is common in many secure ad hoc routing
protocols, but most assume the existence of such information
without any explicit description of how it is transmitted. While
ARAN may appear more expensive, it is in part because
we account for the distribution of the cryptographic keying
material.

In managed-open environments, keys are a priori gener-
ated and exchanged through an existing, perhaps out-of-band,
relationship between T and each node. Before entering the
ad hoc network, each node must request a certificate from
T . Each node receives exactly one certificate after securely
authenticating its identity to T . Details of how certificates
are revoked are explained below in Section V-G. Section V-H
describes the certification process for open environments.

A node A receives a certificate from T as follows:

T → A : certA = [IPA, KA+, t, e]KT−
(1)

The certificate contains the IP address of A (IPA), the public
key of A (KA+), a timestamp t of when the certificate was
created, and a time e at which the certificate expires. Table II
summarizes our notation. These variables are concatenated and
signed by T . All nodes must maintain fresh certificates with
the trusted server.

B. Authenticated Route Discovery

The goal of end-to-end authentication is for the source to
verify that the intended destination was reached. The source
trusts the destination to select the return path.

The source node, A, begins route instantiation to destination
X by broadcasting to its neighbors a route discovery packet
(RDP):

A → broadcast : [RDP, IPX , NA]KA−
, certA (2)

The RDP includes a packet type identifier (“RDP”), the IP
address of the destination (IPX ), A’s certificate (certA) and
a nonce NA, all signed with A’s private key. Note that the
RDP is only signed by the source and not encrypted, so the
contents can be viewed publicly. The purpose of the nonce
is to uniquely identify an RDP coming from a source. Each
time A performs route discovery, it monotonically increases
the nonce. The nonce is 5 bytes in size, and is thus large
enough that it will not need to be recycled within the lifetime
of the network.2 Note that a hop count is not included with
the message.

When a node receives an RDP message, it sets up a reverse
path back to the source by recording the neighbor from which
it received the RDP. This is in anticipation of eventually
receiving a reply message that it will need to forward back
to the source. The receiving node uses A’s public key, which
it extracts from A’s certificate, to validate the signature and
verify that A’s certificate has not expired. The receiving node
also checks the (NA, IPA) tuple to verify that it has not already
processed this RDP; nodes do not forward messages with
already-seen tuples. The receiving node signs the contents
of the message, appends its own certificate, and forward

2If a source sends a new RDP every millisecond, with a 5 byte nonce, it
would take more than 34 years for the value to wrap around.
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broadcasts the message to each of its neighbors. The signature
prevents spoofing attacks that may alter the route or form
loops.

Let B be a neighbor that has received from A the RDP
broadcast, which it subsequently rebroadcasts.

B → broadcast : [[RDP, IPX , NA]KA−
]KB−

, certA, certB
(3)

Upon receiving the RDP, B’s neighbor C validates the sig-
natures for both A, the RDP initiator, and B, the neighbor
it received the RDP from, using the certificates in the RDP.
C then removes B’s certificate and signature, records B as
its predecessor, signs the contents of the message originally
broadcast by A and appends its own certificate. C then
rebroadcasts the RDP.

C → broadcast : [[RDP, IPX , NA]KA−
]KC−

, certA, certC
(4)

Each intermediate node along the path repeats the same steps
as C.

C. Authenticated Route Setup

Eventually, the message is received by the destination, X ,
who replies to the first RDP that it receives for a source and a
given nonce. This RDP need not have traveled along the path
with the least number of hops; the least-hop path may have
a higher delay, either legitimately or maliciously manifested.
In this case, however, a non-congested, non-least-hop path is
likely to be preferred to a congested least-hop path because
of the reduction in delay. Because RDPs do not contain a hop
count or specific recorded source route, and because messages
are signed at each hop, malicious nodes have no opportunity
to redirect traffic with the exploits we described in Section III.

After receiving the RDP, the destination unicasts a Reply
(REP) packet back along the reverse path to the source. Let
the first node that receives the REP sent by X be node D.

X → D : [REP, IPa, NA]KX−
, certx (5)

The REP includes a packet type identifier (“REP”), the IP
address of A (IPa), the certificate belonging to X (certx) and
the nonce sent by A. Nodes that receive the REP forward the
packet back to the predecessor from which they received the
original RDP. Each node along the reverse path back to the
source signs the REP and appends its own certificate before
forwarding the REP to the next hop. Let D’s next hop to the
source be node C.

D → C : [[REP, IPa, NA]KX−
]KD−

, certx, certD (6)

C validates D’s signature on the received message, removes
the signature and certificate, then signs the contents of the
message and appends its own certificate before unicasting the
REP to B.

C → B : [[REP, IPa, NA]KX−
]KC−

, certx, certC (7)

Each node checks the nonce and signature of the previous
hop as the REP is returned to the source. This avoids attacks
where malicious nodes instantiate routes by impersonation and
re-play of X’s message. When the source receives the REP, it

verifies the destination’s signature and the nonce returned by
the destination.

D. Route Maintenance

ARAN is an on-demand protocol. When no traffic has
occurred on an existing route for that route’s lifetime, the
route is simply de-activated in the route table. Data received
on an inactive route causes nodes to generate an Error (ERR)
message. Nodes also use ERR messages to report links in
active routes that are broken due to node movement. All ERR
messages must be signed. For a route between source A and
destination X , a node C generates the ERR message for its
neighbor B as follows:

C → B : [ERR, IPA, IPX , Nc]KC−
, certc (8)

This message is forwarded along the path toward the source
without modification. A nonce ensures that the ERR message
is fresh.

It is extremely difficult to detect when ERR messages
are fabricated for links that are truly active and not broken.
However, the signature on the message prevents impersonation
and enables non-repudiation. A node that transmits a large
number of ERR messages, whether the ERR messages are
valid or fabricated, should be avoided.

E. Responses to Erratic Behavior

Erratic behavior can come from a malicious node, but it
can also come from a friendly node that is malfunctioning.
ARAN’s response does not differentiate between the two and
regards all erratic behavior as the same. Erratic behavior
includes the use of invalid certificates, improperly signed mes-
sages, and misuse of route error messages. ARAN’s response
to erratic behavior is a local decision and the details are left
to implementors. We discuss how susceptible ARAN is to this
behavior in the next section.

F. Potential Optimizations

Although we have specified the use of public certificates
here, it is clear that intermediary nodes (B and C in our
examples) can easily agree upon and exchange session keys
using the certificates that authenticate their participation in
route creation. Two nodes can easily share a symmetric key
generated with their own private key and the public key
of the other. A session key can last the duration of their
juxtaposition and can be a symmetric key, KBC to reduce
processing costs; equivalently, juxtaposed peers can create
low-cost hash chains between themselves for authentication
of future messages. Using these optimizations would decrease
computational overhead and power consumption. However,
even if these optimizations are used, we require that sources
and destinations must include full public-key signatures for
end-to-end route discovery and setup messages.

G. Key Revocation

In some environments with strict security criteria, the re-
quired certificate revocation mechanism must be very reliable
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and expensive. Due to the desired low overhead in wireless
networks and the lower standards of security sought in the
managed-open and open environments, a best-effort immediate
revocation service can be provided that is backed up by the
use of limited-time certificates.

In the event that a certificate needs to be revoked, the trusted
certificate server, T , sends a broadcast message to the ad
hoc group that announces the revocation. Calling the revoked
certificate certr, the transmission appears as:

T → broadcast : [revoke, certr]KT−
(9)

Any node receiving this message re-broadcasts it to its
neighbors. Revocation notices need to be stored until the
revoked certificate would have expired normally. Any neighbor
of the node with the revoked certificate needs to reform routing
as necessary to avoid transmission through the now-untrusted
node.

This method is not failsafe. In some cases, the untrusted
node that is having its certificate revoked may be the sole
connection between two parts of the ad hoc network. In
this case, the untrusted node may not forward the notice of
revocation for its certificate, resulting in a partition of the
network, that lasts until the untrusted node is no longer the
sole connection between the two partitions.

At the time that the revoked certificate should have expired,
the untrusted node is unable to renew the certificate, and
routing across that node ceases. Additionally, to detect this
situation and to hasten the propagation of revocation notices,
when a node meets a new neighbor, it can exchange a summary
of its revocation notices with that neighbor; if these summaries
do not match, the actual signed notices can be forwarded and
re-broadcasted to restart propagation of the notice.

H. ARAN in Open Environments

One of the key characteristics of ARAN is that attack-
ers gain little advantage within ARAN by having additional
certificates. This makes ARAN well suited for use in open
environments where no user is unauthorized to participate
in route creation (see Section IV). Open 802.11 networks
(often called “rooftop networks”) in particular have become
widespread: http://www.nodedb.com lists 8,900 open
access points around the world.

Open wireless access points running open DHCP can extend
their coverage if participating nodes run ARAN. Nodes can
register for a DHCP address and then request that a public
key they provide is signed by the DHCP/certificate server.

Until now, we have assumed that only authorized nodes
can participate in ARAN route creation; however, even par-
ticipating nodes are prevented from malicious actions such
as introducing loops, blackholes, and other attacks covered
in Section III. Therefore, ARAN itself does not need to be
modified. The remaining risk is that attacking nodes can
repeatedly change their MAC addresses and continually ask
for new DHCP addresses as well as new certificates. Thus, the
open environment does have limitations. In particular, it allows
certificate holders to flood the network with data packets. This
attack is an option in the managed environment, except that the

certificate can be revoked without giving the user the ability
to receive renewed authorization.

Jakobsson and Juels have an excellent method of combating
this problem: proof of work protocols [33]. To summarize this
approach, clients are required to solve a puzzle before a request
is satisfied, such as factoring a number. The puzzles could
require additional work as resources become more scarce. This
increases the resources required of attackers to successfully
attack the system proportional to the threat of the attack.
Alternatively, certificates can cost money, limiting the ability
of the attackers to request them limitlessly. A short lifetime
on certificates can also help manage the network.

VI. SECURITY ANALYSIS

In this section, we provide a security analysis of ARAN
by evaluating its robustness in the presence of the attacks
introduced in Section III. As mentioned earlier, we do not
consider denial-of-service attacks based on non-cooperation
or aggressive participation, which are possible against all ad
hoc routing protocols.

Unauthorized participation: Since all ARAN packets must
be signed, a node cannot participate in routing without autho-
rization from the trusted certificate server. This access control
therefore rests in the security of the trusted authority, the
authorization mechanisms employed by the trusted authority,
the strength of the issued certificates, and the revocation mech-
anism. Although we do not detail these functions explicitly,
except for certificate revocation, they have been extensively
studied by others.

In practice, many single-hop 802.11 deployments already
use VPN certificates; this is the case on the UMass campus.
Mechanisms for authenticating users to a trusted certificate
authority are numerous; a significant list is provided by
Schneier [34]. The trusted authority is also a single point of
failure and attack; however, multiple redundant authorities may
be used (e.g., as by Zhou and Haas [17]).

Spoofed Route Signaling: Route discovery packets contain
the certificate of the source node and are signed with the
source’s private key. Similarly, reply packets include the
destination node’s certificate and signature, ensuring that only
the destination can respond to route discovery. This prevents
impersonation attacks where either the source or destination
nodes is spoofed.

Fabricated Routing Messages: Since all routing messages
must include the sending node’s certificate and signature,
ARAN ensures non-repudiation and prevents spoofing and
unauthorized participation in routing. ARAN does not prevent
fabrication of routing messages, but it does offer a deterrent
by ensuring non-repudiation. A node that continues to inject
false messages into the network may be excluded from future
route computation.

Alteration of Routing Messages: ARAN specifies that all
fields of RDP and REP packets remain unchanged between
source and destination. Since both packet types are signed by
the initiating node, any alterations in transit would be detected,
and the altered packet would be subsequently discarded. Re-
peated instances of altering packets could cause other nodes to
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exclude the errant node from routing, though that possibility is
not considered here. Thus, modification attacks are prevented.

Securing Shortest Paths: We believe there is no way to
guarantee that one path is shorter than another in terms of
hop count. Tunneling attacks, such as the one presented in
Section III-A.4, are possible in ARAN as they are in any
secure routing protocol. Securing a shortest path cannot be
done by any means except by physical metrics such as a
timestamp in routing messages. Accordingly, ARAN does not
guarantee a shortest path, but offers a quickest path which is
chosen by the RDP that reaches the destination first. Malicious
nodes could save some processing time by not verifying the
previous hop’s signature on the RDP packet, thus increasing
their chances of being on the quickest route. However such an
attack is likely to succeed only if it is executed by multiple
malicious nodes on a route, or if a malicious node is already on
one of many quick routes to the destination. Malicious nodes
also have the opportunity in ARAN to lengthen the measured
time of a path by delaying REPs as they propagate, in the
worse case by dropping REPs, as well as delaying routing
after path instantiation. Finally, malicious nodes using ARAN
could also conspire to elongate all routes but one, forcing the
source and destination to pick the unaltered route; clearly, a
difficult task.

Forwarding Attacks: We have not detailed a specific
method of secure forwarding. This could be accomplished
using the cryptographic material available to ARAN, but
would add overhead to the cost of data transmission. A simple
method of protecting data packets would be to use the route
reply process to instantiate shared keys between neighbors, and
to use that shared key the basis for a pair-wise HMAC. This
enforces that only certificate owners can forward data. It does
not prevent certificate holders from replay attacks, but in any
protocol, authorized participants can just as effectively attack
the system by flooding the network with valid data packets for
routes they create. End-to-end integrity can be ensured by the
shared key derivable from the two peers’ public keys.

Denial-of-Service Attacks: Denial-of-service attacks can
be conducted by nodes with or without valid ARAN certifi-
cates. In the certificateless case, all possible attacks are limited
to the attacker’s immediate neighbors because unsigned route
requests are dropped. There are more severe attacks available
at the MAC and physical layer than ARAN provides. Nodes
with valid certificates can conduct effective attacks, however,
by sending many unnecessary route requests. Because these
are broadcast and forwarded across the network, an attacker
can cause widespread congestion and power-loss to all nodes
in the network. Because it is difficult to infer the node’s intent
at the network level, it can be hard to differentiate between
legitimate and malicious RREQs.

VII. NETWORK PERFORMANCE

In this section, we evaluate the performance of ARAN using
measurements obtained through both simulation and imple-
mentation. Simulations enable us to measure the effectiveness
and efficiency of ARAN in reasonably large networks, with
and without the presence of malicious nodes. Although sim-
ulation is a useful tool for anticipating protocol performance

in real networks, it needs to be complemented with protocol
implementation in order to obtain a more realistic evaluation of
the protocol. With this motivation, we begin this section with
a characterization of our ARAN implementation over a three-
node network; we then use the quantitative results obtained as
input to a simulation of a 50-node network.

A. ARAN Implementation

Our open-source implementation of the ARAN protocol,
called arand, is publicly available from http://signl.
cs.umass.edu/software/arand. It is a user-space
routing daemon designed to run on Linux systems with kernel
2.4 or higher. The daemon is written in C and utilizes the
Ad hoc Support Library (ASL) written by Kawadia, Zhang,
and Gupta [35]. The ASL and its accompanying Linux kernel
module are designed to provide a layer of abstraction that
serves as a consistent interface to system functionality required
by all ad hoc network protocols. These services include adding
and deleting kernel routes as well as notification to the user-
space daemon that a route to another host is needed. The
library and module also provide functionality to keep track of
when routes were last used. This allows routing daemons to
delete routes that may no longer exist due to node movement.

The cryptographic functions of arand make use of the
OpenSSL library (http://www.openssl.org), which
provides functions for general purpose cryptographic tasks
such as public and private key encryption/decryption, signing,
and certificate management. Each mobile node is issued an
X.509 certificate signed by a common Certification Authority.
The certification authority and mobile node certificates can be
created and managed using the aranca script that is available
on the arand project site. All routing related communication
between the mobile nodes is done using UDP datagrams.
These messages include the message types specified by the
ARAN protocol such as RDP, REP, and ERR, as well as signed
hello messages that are used by nodes to discover neighbors.

A typical interaction between mobile nodes running arand
proceeds as follows. A user on node A attempts to establish
a network connection to node C. The kernel on A searches
its routing table for a route to C, but does not find one if A

and C are out of signal range and cannot receive each other’s
hello messages or if a previous route between A and C has
expired and been deleted from the kernel routing table. arand
is notified of the need for a route to C by the Ad hoc Support
Library, which in turn uses the TUN/TAP feature of the Linux
kernel. arand running on A checks its state information and
determines that it does not have any pending route requests for
destination C. It then creates a new RDP message signed with
its private key and broadcasts this route request on the network.
The protocol then follows the steps specified in Section V.

Each node must cryptographically sign and verify each rout-
ing message along a path. These cryptographic operations are
relatively expensive, especially when compared to other ad hoc
routing protocols that do very little computation per message.
It is important to note however, that only the routing control
messages between nodes are subject to signing/verifying. Data
packets exchanged between nodes after a route has been set
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Average (ms) ± Std. Dev.
Laptop:
512 bit RSA key: 2.2 ± 0.44
768 bit RSA key: 4.3 ± 0.52

1024 bit RSA key: 7.6 ± 0.62
iPAQ:
512 bit RSA key: 45.4 ± 1.14
768 bit RSA key: 109.2 ± 1.64

1024 bit RSA key: 199.7 ± 2.21

TABLE III
RAW TIME TO PROCESS AN RDP PACKET. LAPTOP: 1200MHZ PENTIUM

3, 512MB RAM. HANDHELD: HP IPAQ 3850 206MHZ INTEL STRONG

ARM 32-BIT RISC PROCESSOR, 64 MB RAM

up are not processed by arand in any way; they do not have
attached certificates and are not signed. Once a route is set
up, the routing daemon is out of the picture until that route
becomes invalid and is needed again.

B. ARAND Performance

We have conducted two types of tests to determine the
overhead of using certificates and signatures in ARAN. These
tests include measurements of raw processing time per routing
packet for different key sizes, and measurements of the average
route acquisition latency.

We note that the energy cost of cryptographic operations
could be of some concern, particularly in resource-constrained
mobile devices. However, the energy consumed by wireless
communication is significantly higher; a single bit transmis-
sion consumes over 1000 times more energy than a single
32-bit computation [36]. Additionally, route discovery is per-
formed infrequently in most ad hoc networks. We therefore
do not consider the energy consumption of cryptographic
computations to be significant, and do not measure it in
our experiments. The wireless communication overhead is
quantified in section VII-C.

1) Message Processing Time: We examined the raw pro-
cessing time expended at a node for an ARAN packet. Specif-
ically, we measured the processing time required for a node to
receive an RDP message from a neighbor that is not the initial
sender of the RDP, verify that the certificate attached by the
neighbor the message was received from is valid, verify the
neighbor’s signature on the message, strip off the neighbor’s
certificate, add its own certificate, sign the message, and then
rebroadcast the message. We make the distinction between
a forwarded RDP and one received from the initial sender
because the former is larger since it includes the certificate
and signature of the neighbor as well that of the node that
originally sent the RDP: both signatures are checked, and our
simulations reflect this. Measuring per node processing time on
this type of message gives us an upper bound on the processing
time for a routing message at each node. Hello messages and
error messages (RERR) require less processing time.

We conducted this test by mirroring the sequence of func-
tion calls that are performed when an RDP message is received

by arand; however, we do not consider the time spent
performing operations on the state that is maintained in arand
(such as looking through a list of RDPs to determine whether
we have already seen a particular message). This simplified
the test and allowed us to focus on the time spent on the
cryptographic operations instead of state maintenance, which
is negligible in comparison.

The main purpose of this performance test was to illustrate
the expense of processing routing messages with two different
types of devices that are likely to participate in an ad hoc
network using the ARAN protocol. Table III shows our results.
We measured processing time for both a laptop and a handheld
computer over three different RSA key sizes: 512, 768, and
1024 bits. For both devices, increasing the key size by 256
bits roughly doubles processing time. Perhaps most striking
in Table III is the difference in processing times between the
laptop and the handheld. For each key size, the processing
time is between 20 and 30 times slower on the handheld than
on the laptop. From this, it is clear that the processing power
of the nodes expected to participate in an ad hoc network
can limit key sizes if routing overhead is a limiting factor.
In other words, ARAN is not appropriate for low-resource
devices when node mobility is high and route changes are
very frequent.

2) Route Acquisition Latency: We also measured the aver-
age route acquisition latency, which is the delay from route
request initiation to the receipt of a corresponding reply. The
results of measuring latency in this way depend on the number
and topology of network nodes. For simplicity, and because
creating an elaborate topology with actual machines would
be unwieldy, we created a simple topology with three nodes
oriented in a straight line topology: A ↔ B ↔ C. The node
in the middle is within range of the two end nodes, but the
end nodes are not in range of each other. We measured the
route acquisition latency for a route request from A to C. All
routing messages are sent through the intermediate node, B.

For comparison, we have executed this experiment for
both AODV using the AODV-UIUC version 0.5 (http://
aslib.sourceforge.net), which is an AODV daemon
written to use the Ad hoc Support Library, and for ARAN us-
ing arand version 0.3.2. All nodes running arand are using
version 0.9.6d of the OpenSSL library. Both routing daemons
were modified to record the time when a route request is sent
and when its corresponding route reply is received. Also, when
a route reply is received, we disabled the actual addition of the
newly discovered route to the kernel to allow us to continually
request routes without restarting the daemon. On the sender
node A, we ran a script that automatically generated network
traffic for destination C, causing the daemon to request a route.
The script then sleeps for a random number of seconds before
generating traffic again. We measure route latency across three
different RSA key sizes used by the nodes. However, in each
case the CA signed client certificates were signed with a 1024-
bit RSA key.

We measured average route acquisition latency using two
topologies consisting of different types of devices. Table IV
shows average route acquisition latency for the topology where
node A was a laptop, and nodes B and C were iPAQs. The
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Laptop→iPAQ→iPAQ Laptop→Laptop→Laptop
avg. (ms) ± std. dev. avg. (ms) ± std. dev.

arand:
512 bit RSA key: 237.0 ± 16.8 22.2 ± 0.9
768 bit RSA key: 435.3 ± 34.8 31.9 ± 0.9

1024 bit RSA key: 729.3 ± 71.0 46.2 ± 1.4
aodvd:

no keys used 4.2 ± 1.4 2.0 ± 0.2

TABLE IV
THE AVERAGE LATENCY TO ACQUIRE A ROUTE IN TWO NETWORKS: FROM A LAPTOP THROUGH TWO IPAQS, AND THROUGH A ROUTE CONSISTING OF

THREE LAPTOPS.

last column of Table IV shows the average route acquisition
latency for the topology where nodes A, B, and C are all
Pentium 3 laptops. As can be seen from Table IV, in the
iPAQ topology, the route acquisition latency using arand is
between 56 and 175 times slower than aodvd, depending
on the size of the key used on the nodes running arand.
When laptops, which have significantly greater processing
power than the iPAQs, are used, arand is only between 11
and 23 times slower than aodvd, depending on the size of
the key. Even with the comparatively high route acquisition
latencies experienced with the iPAQ topology, these latencies
are still rather small compared with the duration of the typical
connection between nodes in an ad hoc network. It is important
to note that after a route is set up between two nodes, data
packets exchanged between the nodes do not involve the
ARAN routing daemon in any way, so this cost is incurred
only once unless the route breaks. The lifetime of a route
between a pair of nodes will typically be much longer than
the time necessary for route acquisition in all ad hoc networks,
except those with the most rapidly changing topologies. The
initially higher cost to acquire a route will likely turn out to
be an acceptable price to pay to ensure node authentication
and prevention of modified or forged routing messages.

C. Simulated Network Performance

We performed our evaluations using the Global Mobile
Information Systems Simulation Library (GloMoSim) [37].
We used an IEEE 802.11 MAC layer and CBR traffic over
UDP.

We simulated two types of field configurations: 20 nodes
distributed over a 670m x 670m terrain, and 50 nodes over a
1000m x 1000m terrain. The initial positions of the nodes were
random. Node mobility was simulated according to the random
waypoint mobility model. The node transmission range was
250m. We ran simulations for constant node speeds of 0, 1, 5
and 10 m/s, with pause time fixed at 30 seconds. We simulated
five CBR sessions in each run, with random source and
destination pairs. Each session generated 1000 data packets
of 512 bytes each at the rate of 4 packets per second.

ARAN was simulated using a 512 bit key and 16 byte
signature. These values are reasonable to prevent compromise
during the short time nodes spend away from the certificate
authority and in the ad hoc network.

For both ARAN and AODV, we assumed a routing packet
processing delay of 1ms. This value was obtained through
field testing of the AODV protocol implementation [38]. An
additional processing delay of 2.2ms was added for ARAN
to account for the cryptographic operations. This value was
obtained through the implementation testing of ARAN, as
reported in table III. Additionally, a random delay between
0 and 10ms was introduced before the transmission of a
broadcast packet in order to minimize collisions. This is
required since the 802.11 MAC protocol does not perform
an RTS/CTS exchange for broadcast packets. Since we are
working with fairly dense networks, the probability of collision
of broadcast packets becomes quite high in the absence of this
random delay.

In order to compare the performance of ARAN and AODV,
both protocols were run under identical mobility and traffic
scenarios. A basic version of AODV was used, which did not
include optimizations such as the expanding ring search and
local repair of routes. This enables a consistent comparison of
results.

We evaluated six performance metrics:
(1) Packet Delivery Fraction: This is the fraction of the

data packets generated by the CBR sources that are delivered
to the destination. This evaluates the ability of the protocol to
discover routes.

(2) Routing Load (bytes): This is the ratio of overhead
bytes to delivered data bytes. The transmission of a control
byte at each hop along the route was counted as one trans-
mission in the calculation of this metric. ARAN suffers from
larger control overhead due to certificates and signatures stored
in packets. Notice that many other secure routing protocols
assume the existence of key information without accounting
for the costs of distributing it; while ARAN may appear more
expensive it is in part because our analysis is more complete.

(3) Routing Load (packets): Similar to the above metric,
but a ratio of control packet overhead to data packet overhead.

(4) Average Path Length: This is the average length of
the paths discovered by the protocol. It was calculated by
averaging the number of hops taken by each data packet to
reach the destination.

(5) Average Route Acquisition Latency: This is the av-
erage delay between the sending of a route request/discovery
packet by a source for discovering a route to a destination
and the receipt of the first corresponding route reply. If a
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(f) End-to-End Delay of Data Packets.

Fig. 1. Simulation Results.

route request timed out and needed to be retransmitted, the
sending time of the first transmission was used for calculating
the latency.

(6) Average End-to-End Delay of Data Packets: This is
the average delay between the sending of the data packet by
the CBR source and its receipt at the corresponding CBR
receiver. This includes all the delays caused during route
acquisition, buffering and processing at intermediate nodes,
and retransmission delays at the MAC layer.

1) Performance Results: Figures 1(a) through 1(f) show the
observed results for both the 20 and 50 node networks. Each
data point is an average of 10 simulation runs with identical
configuration but different randomly generated mobility pat-
terns. Error bars report 95% confidence intervals and are small
in all cases.

As shown in Figure 1(a), the packet delivery fraction
obtained using ARAN is 95% or higher in all scenarios and
almost identical to that obtained using AODV. This suggests
that ARAN is highly effective in discovering and maintaining
routes for delivery of data packets, even with relatively high
node mobility.

Traditionally, the shortest path to a destination (in terms of
number of hops) is considered to be the best routing path.
AODV explicitly seeks shortest paths using the hop count
field in the route request/reply packets. ARAN, on the other
hand, assumes that the first route discovery packet to reach
the destination must have traveled along the best path (i.e.,
the path with the least congestion).

The average path length graphs are almost identical for the
two protocols, as shown in Figure 1(b). This indicates that
even though ARAN does not explicitly seek shortest paths,
the first route discovery packet to reach the destination usually
travels along the shortest path. Hence ARAN is as effective
in finding the shortest path as AODV. It should be noted,
however, that in networks with significantly heavier data traffic
loads, congestion could prevent the discovery of the shortest
path with ARAN.

Figs. 1(c) and 1(d) show the routing load measurements
in bytes and packets, respectively. ARAN’s byte routing load
is significantly higher and increases to nearly 94% for 50
nodes moving at 10 m/s, as compared to 42% for AODV.
This is due to the security data. However, the number of
control packets transmitted by the two protocols is roughly
equivalent. Figure 1(d) shows the average number of control
packets transmitted per delivered data packet. AODV has the
advantage of smaller control packets; smaller packets have a
higher probability of successful reception at the destination.
However, due to the IEEE 802.11 MAC layer overhead for
unicast transmissions, a significant part of the overhead of
control packets is in acquiring the channel. In this respect, the
two protocols demonstrate nearly the same amount of packet
overhead.

Figure 1(e) shows that the average route acquisition latency
for ARAN is approximately double that for AODV. While
processing ARAN control packets, each node has to verify
the digital signature of the previous node, and then replace
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Fig. 2. Effect of malicious node behavior.

this with its own digital signature, in addition to the normal
processing of the packet as done by AODV. The cryptographic
operations cause additional delays at each hop, and so the route
acquisition latency increases.

We found through our implementation testing that the route
acquisition latency using ARAN is 11 to 23 times higher
than that using AODV, as reported in table IV. On the other
hand, our simulations show that it is less than twice as high,
as shown in figure 1(e). The reason for this discrepancy is
the random delay we introduced before transmitting broadcast
packets in the simulations, as described in section VII-C. Since
the network used in the implementation testing is simple and
not dense, the random delay was not required there. However,
it is necessary in the relatively dense simulated networks for
reducing collisions.

The data packet latencies for the two protocols are again
almost identical as shown in Figure 1(f). Although ARAN
has a higher route acquisition latency, the number of route
discoveries performed is a small fraction of the number of data
packets delivered. Hence the effect of the route acquisition
latency on average end-to-end delay of data packets is not
significant. The processing of data packets is identical when
using either protocol, and so the average latency is nearly the
same.

2) Effect of Malicious Node Behavior: The experiments
described in the previous sections compare the performance
of ARAN and AODV when all the nodes in the network are
well-behaved or benign. We conducted additional experiments
to determine the effect of malicious node behavior on the two
protocols. We used a field configuration of 50 nodes distributed
over a 1000m x 1000m area.

As illustrated earlier, various types of malicious behavior are
possible when using AODV. The malicious behavior simulated
in these experiments is as follows: whenever a malicious node
forwards an RREQ or RREP packet, it illegally resets the hop
count field to 0, thus pretending to be only one hop away from
the source or destination node, respectively. The objective of
a malicious node is to try to force the selected routes to pass
through itself by exploiting the routing protocol, so that it is
able to overhear and potentially modify or drop data packets.

The effect of this behavior is that non-shortest paths containing
malicious nodes are likely to be selected, and the average
path length increases. ARAN, on the other hand, cannot be
exploited in this fashion. When using ARAN, the selected
route could still pass through a malicious node; however, the
routing protocol cannot be manipulated to force this behavior.

We ran simulations with 10%, 20% and 30% malicious
nodes for each protocol. The malicious nodes were selected
randomly. We measured the following metrics:

Average path length: Malicious nodes can exploit AODV so
that non-shortest paths are selected, while such exploitation
is not possible with ARAN. This metric indicates the extent
of path elongation in AODV in the presence of different per-
centages of malicious nodes. The metric is important because
longer routes result in greater routing overhead and longer data
packet delays.

Fraction of data packets received that passed through
malicious nodes: This metric indicates the fraction of data
packets that traverse malicious nodes when using each routing
protocol, in the presence of different percentages of malicious
nodes. The metric is important because data packets passing
through malicious nodes are overheard by these nodes, and
could potentially be modified or dropped.

Figure 2 illustrates the results of the experiments. As seen
in Figure 2a, the average path length increases about 10% for
AODV in the presence of malicious nodes. Figure 2b shows
that when using AODV, a much larger fraction of data packets
passes through malicious nodes, as compared to using ARAN.
For instance, in the presence of 10% malicious nodes with
no node mobility, only 22% of data packets pass through
malicious nodes when using ARAN, as compared to almost
40% when using AODV. This is because malicious nodes can
potentially manipulate AODV to make routes pass through
themselves.

D. Energy Costs

ARAN’s energy expenditure is high in comparison to pro-
tocols that employ hash chains, like Ariadne. This is because
ARAN spends longer time verifying signatures. These costs
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must be viewed in context of other energy costs of the
handheld device. It is important to realize that in an ad hoc
network, the handheld device must be powered at all times for
successful reception of route requests. The question we must
ask is, what is the additional energy spent during ARAN’s
cryptographic operations?

The largest energy drain on a handheld device is due to
operating a wireless network interface card (NIC), as several
researchers have found. From our experiments (see Table 3 in
the paper), we know the running time for an iPAQ to process
an RDP packet is 45ms. Many measurement studies exist on
our equipment. Using values record by Kremer et al [5], Bahl
et al [2], and Cho [4] as a baseline, we can provide a estimate
of the costs of ARAN’s cryptographic operation.

If we set the CPU power cost as 12% of 1250mW as per
Kremer’s measurements, then the energy usage for processing
an RDP packet is 150mW ·0.045sec = 6.8mJ . Costs equal
to ARAN’s CPU operations will be spent by an idle radio
(805mW [2]) coupled with an idle iPAQ (470mW [4]) every
5ms.

VIII. CONCLUSION

Popular ad hoc routing protocols are subject to a variety of
attacks, which, through modification or fabrication of routing
messages or impersonation of other nodes, can allow attackers
to influence a victim’s selection of routes or enable denial-of-
service attacks. We have shown a number of such attacks, and
how they are easily exploited in two ad hoc routing protocols
under consideration by the IETF.

Our protocol, ARAN, provides secure routing for the
managed-open and open environments. ARAN provides au-
thentication and non-repudiation services using cryptographic
certificates that guarantees end-to-end authentication. In doing
so, ARAN limits or prevents attacks that can afflict other
insecure protocols. ARAN is a simple protocol that does
not require significant additional work from nodes within the
group. Our simulations and experiments show that ARAN is
as effective as AODV in discovering and maintaining routes.
The cost of ARAN is larger routing packets, which result
in a higher overall routing load, and higher latency in route
discovery because of the cryptographic computation that must
occur.
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