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Abstract. Malicious software (malware) is one of the largest threats
facing the Internet today. In recent years, malware has proliferated into
wireless LANs as these networks have grown in popularity and preva-
lence. Yet the actual effects of malware-related network traffic in open
wireless networks has never been examined. In this paper, we provide the
first study to quantify the characteristics of malware on wireless LANs.
We use data collected from the large wireless LAN deployment at the
67th IETF meeting in San Diego, California as a case study. The mea-
surements in this paper demonstrate that even a single infected host can
have a dramatic impact on the performance of a wireless network.

1 Introduction

There has been ample research on the separate topics of malware and wireless
networks. A majority of malware research has focused on propagation model-
ing, detection, and application characterization [3][5][8]. The impact of malware
induced traffic on the performance of wired networks has been largely ignored,
because the effects of additional ingress and egress flows are mitigated by faster
access technologies and more bandwidth. However, limited resources in wireless
networks and the inherently broadcast nature of the medium creates valid con-
cerns when considering network performance. This work analyzes these effects
which include MAC layer retransmissions, management frame collisions, and an
overall performance degradation due to increased congestion.

Wireless networks have been examined through experimental measurements
and simulations. Many studies have assessed wireless performance on deployed
networks [1][9][10][13]. Rodrig et al. captured wireless traffic and analyzed the ef-
ficiency of the 802.11 protocol [12]. They present how the efficiency significantly
degrades during periods of high contention with the majority of packets requir-
ing link layer retransmissions due to packet loss and transmission errors. These
results are consistent with our own findings. Jardosh et al. examined methods
for detecting congestion in large-scale wireless networks [7]. They propose that
monitoring the channel busy time is a good measure of channel utilization. In



addition, network throughput and goodput can be used as metrics to identify
congestion. Heusse et al. [6] found that anomalies in current multi-rate adap-
tion algorithms of 802.11 cause an overall reduction in network performance,
especially during periods of congestion. We also observed this behavior during
several malware attacks. What all of these studies lack is an accounting of the
extraneous packets that are injected into the network by malicious software.

We are the first to quantify, characterize, and correlate the effects of malicious
network traffic on wireless performance. We believe that analyzing the effects
malware can have on wireless networks is important. The applications of our
research can lead to more realistic traffic models, justify the need for network
protection, and improve the quality of service in wireless networks. In addition,
recognizing these effects are beneficial in wireless network diagnostics [2][4].

The remainder of this paper is organized as follows. Section 2 describes our
data collection and filtering process. In Section 3, the data sets are summarized.
The effects that malware produced in the wireless network are examined in
Section 4. Section 5 concludes with an overall summary of our findings.

2 Data Collection and Filtering

The wireless network deployed at the 67th IETF meeting was unusual due to
both its large size and heavy utilization. The network provided an excellent op-
portunity to analyze the characteristics and prevalence of malware. With more
than 1,700 unique users on the network, the resulting trace provided the equiva-
lent of a small Internet Service Provider’s (ISPs) perspective of malware attacks.
Details of our data collection process at the IETF meeting and our subsequent
malware identification process are discussed in this section.

2.1 Experimental Setup

The on-site network at the IETF meeting consisted of 30 802.11 a/b/g access
points routed to a 44.7Mbps T3 backhaul link to the Internet. Participants uti-
lized the Dynamic Host Configuration Protocol (DHCP) to obtain a publicly
routable IP address in the 130.129/16 address range. No MAC layer encryp-
tion, Network Address Translation (NAT) devices, or firewalls were present in
between the access points and the backhaul connection.

We collected data from two vantage points:

1. Trunk Data Set : Full data traces were recorded from a trunk mirror port on
the router which managed the backhaul Internet link.

2. Wireless Data Set : Wireless sniffers were strategically positioned around the
meeting near popular access points to record wireless traffic, as shown in
Figure 1. Each wireless sniffer consisted of an IBM or Toshiba laptop with
an Atheros chipset. Each sniffer was configured in RFMon mode to capture
all management and data frames. Based on previous measurements [7], we
estimate that each sniffer recorded more than 90% of frame transmissions.
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Fig. 1. Locations of wireless APs and data collection sniffers at the IETF meeting.

Over 511 gigabytes of uncompressed data were collected at the trunk port along
with another 131 gigabytes of uncompressed data recorded by the wireless snif-
fers. The data collected from the trunk port included some packets destined for
a small on-site terminal room. This location was the only place in which atten-
dees could access a wired Ethernet connection. We were able to identify traffic
from the terminal room from the fixed set of IP addresses assigned by DHCP,
by comparing IP addresses in both traces, and confirmed that less than 10% of
the traffic observed in the trunk data set came from the terminal room.

2.2 Filtering Heuristics

In order to isolate malicious traffic from the normal flows present in the data
set, we created a set of heuristic-based filters to detect abnormal behavior. We
designed the filters around a set of assumptions about known malware behavior
patterns, and then constructed an identification and measurement system. We
observed that malware’s traffic exhibits two primary types of traffic patterns:

– Scanning behavior : Worms and Trojans are typically spread by scanning
large sequences of IP addresses on known ports. The scans search for vulner-
able or weakly protected services (e.g., default, weak or non-existent pass-
words) that can be exploited.

– Flooding behavior : Malware is often directed to attack other computers by
flooding them with connection attempts (e.g., a SYN flood).

One of the key characteristics of scanning behavior is that the machine in ques-
tion will contact an abnormally large number of different IP addresses. This
behavior will occur repeatedly on known vulnerable ports. Flooding behavior
is best characterized as one machine initiating an unusually large number of
connection attempts to one particular IP address.



For both behavior patterns, malicious traffic flows are often unidirectional
and almost always short-lived. In the former pattern, scan attempts are often
directed at unused IP addresses, or towards machines with firewalls which results
in unidirectional traffic. SYN floods are by definition, unidirectional. If a scanner
does manage to find a live target, it will attempt to either infect the host or guess
the host’s password, both of which are relatively brief affairs. Attempts may be
repeated, but the connection is broken and reset each time, leading to bursty
traffic flow characteristics. Another important consideration is that certain forms
of malware including adware, keyloggers, and open relay proxies generate smaller
amounts of network traffic and are consequently harder to identify. Therefore,
the rest of our results should be considered as a lower bound of malware present.

3 Wireless and Trunk Data Analysis

Before we examined our wireless data set, we first developed a more general
characterization of the network activity at the IETF using the trunk data set.
Besides deriving network statistics, we used the trunk data set as the basis to
identify malicious flows, which we later correlated with the more restricted data
set obtained from the wireless sniffers.

3.1 Malicious Traffic Analysis

We begin by analyzing the malicious traffic present in the trunk data set. There
were 109,740 unique external IP addresses in the trace, and 3,941 were implicated
in malicious behavior, or about 3.6%. We identified 1,786 internal IP addresses,
and out of this set 14 (0.8%) showed indications of malicious activity.

Overall, 272,480,816 egress TCP packets were sent over the course of the
meeting, of which 4,076,412 (1.5%) were involved in malicious flows. 284,565,595
ingress TCP packets were received, of which 2,765,683 (1.0%) were malicious.
In general these results appear consistent with a study by Kotz and Essien [9].
They recorded observing 0.9% of TCP traffic being sent to Microsoft RPC port
445, which they correlate with denial-of-service attacks against Windows 2000
machines. In our case, since we quantify scanning as well as flooding attacks
across multiple services, our results represent a more complete view of overall
malicious traffic percentages.

Although malicious TCP traffic accounted for an average of 1% of the total
traffic at the IETF meeting, it accounts for a much larger percentage of TCP
control traffic, defined as SYN and SYN-ACK packets. Thus, when data pack-
ets are not considered, the magnitude of malicious traffic becomes much more
pronounced (as displayed in Figures 2 and 3). From this data, malicious flows
are shown to account for a substantial portion of total TCP connection requests,
occasionally rising above 50%. During a massive SSH password cracking attempt
on Friday morning, nearly 100% of all TCP control traffic was part of the attack,
and is clearly evident in Figures 2 and 3. In addition to conducting an analysis of
malware behavior within the IETF network, we also attempted to isolate what
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Fig. 2. Instantaneous percentage of in-
coming malicious TCP traffic
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Fig. 3. Instantaneous percentage of
outgoing malicious TCP traffic

effects such traffic had on the wireless medium itself. Although we were able to
identify many attacks in the trunk data set, pinpointing these same attacks in
the wireless data set proved to be difficult since our sniffers did not observe all
wireless LAN traffic across all access points. From the set of malicious flows that
were detectable in the wireless data sets, many proved unsuitable for analysis.
The reasons include the following:

1. Ingress attacks that involved only a few total packets.
2. Egress scanning attacks which, though long lived, only generated a few pack-

ets per second.
3. Ingress port scans that were distributed over hosts on all 30 access points.
4. Backscatter from DoS attacks throughout the Internet that produced unso-

licited TCP SYN ACKs, resets, and ICMP replies [11].

Although the preceding cases were not ideal for analyzing MAC characteristics,
these attacks still had an overall effect as more than 1% of all packets were
malicious and present in the wired and wireless data sets. The most substantial
effects on wireless performance were produced by malicious flows that originated
within the network. Therefore, we examined several of these egress flows under
light and heavy channel utilization.

4 Quantifying the Impact of Malware

As previously discussed in Section 3.1, malicious egress flows were well suited for
our analysis since these flows consumed more bandwidth, and caused more colli-
sions than malicious ingress flows. In order to understand the impact of these ma-
licious flows on the MAC layer, we aggregated statistics for channel utilization,
throughput, probe requests/responses, data packets/retries/acknowledgments,
and transmission rates. At the transport layer we computed the TCP Round-
Trip-Times (RTT) to determine the end-to-end delay.



Table 1. The effects on TCP RTT of an ICMP flood and NetBIOS attack.

Non-Attack Interval During Attack Percent Increase

Avg (Egress) 64.7 ms 99.2 ms 53.23%
Avg (Ingress) 23.4 ms 36.1 ms 54.36%
Median (Egress) 41.6 ms 85.0 ms 104.33%
Median (Ingress) 3.2 ms 6.8 ms 112.50%

4.1 Malware Attacks in Wireless Networks

We performed a detailed analysis of two of the largest attacks occurring in the
wireless data sets during the meeting based on packets per second and band-
width. These types of attacks were also the most common that we observed.
They included an ICMP ping flood combined with a NetBIOS exploit and a
TCP SYN Flood.

ICMP Flood and NetBIOS Exploit. One of the largest network attacks
observed during the entire meeting was an ICMP ping sweep across a range of
IP addresses. The attack was used to probe for machines and prepare for a sub-
sequent NetBIOS worm exploit. The malicious flow persisted for approximately
18 minutes and 7 seconds occurring late Thursday afternoon during the plenary
session between 17:02:38 and 17:20:45. The attack created 79,289 packets at an
average rate of 117 packets per second with a maximum burst of 235 packets
per second. The impact of the flow drove the channel utilization to nearly 100%,
and caused both a rise in the number of link layer data retries (retransmissions)
and a reduction in the transmission rates (shown in Figure 4). The metric in
Figure 4(b) shows the two primary ranges of transmission rates of 11-18Mbps
and 48-54Mbps that were used by wireless clients. The rectangular regions in
Figure 4 and 5 indicate the periods of malicious traffic flow.

As part of our analysis, we also discovered a brief period in the middle of
the ping flood just after 17:09:00 when the attack halted. This temporary pause
resulted in a reduction in utilization, an increase in data transmission rates,
and fewer data retries. Unfortunately we were not able to determine why the
attack was suspended during this two minute interval, but we conjecture that
the infected machine may have become unresponsive and was rebooted.

An additional result that we observed in our analysis was that overall, the
combined throughput on the channel remained relatively constant at 4,412 KB/s
over the course of the attack. However, the average and median RTT increased
by more than 50% and 100% respectively for all TCP flows. Table 1 displays the
average and median RTTs for a 10 minute interval before and after the attack
with respect to the RTT during the attack.

There are several conclusions that can be drawn based on these results. First,
the attacker was not only able to adversely affect other clients’ performance, but
also obstruct the access point’s probe responses to clients who were searching
for access points via probe requests. This is evident in Figure 4(d), which il-
lustrates the spike in probe responses immediately after the attack occurred.



Consequently, the attack exacerbated a problem in the wireless network in that
probe requests and responses were essentially jammed during heavy utilization.
Access point control packets such as beacons, probes, and other management
frames were also lost or delayed, and therefore served no productive purpose
and only contributed to the overall network congestion.

A reduction in client transmission rates occurred due to the Auto Rate Fall-
back (ARF) mechanism, as illustrated in Figure 4(b), due to increased packet
loss. As a result, packet transmission times increased, which further increased
the channel busy time. The purpose of ARF is to combat lossy channel condi-
tions by sending data at lower rates (i.e., provide more robust modulation and
coding schemes), and thus decrease the likelihood that data is lost because of
radio noise. However, using the ARF strategy is a poor choice in this case since
dropped packets are due to packet collisions and not noise interference. Dur-
ing these congested periods, this behavior created a negative feedback loop as
client queues filled, but were unable to effectively drain due to contention com-
pounded by slower transfer rates. Therefore, the delay for each host increased
as they continuously waited for the channel to become idle.
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Fig. 4. ICMP Flood and NetBIOS exploit effects on the wireless medium.

The dramatic increase in TCP delay, as shown in Table 1, can be attributed
to the additional strain that this attack placed on the link layer. Accordingly, the



attack produced a large amount of data retransmissions. During the attack nearly
25% of all MAC layer frames were retransmissions, and at the peak of the attack
almost 50% of all packets were retransmissions. In addition, as clients following
the ARF procedure reduced their transmission rates, the channel became even
more congested as transmissions took longer to complete. These characteristics
had a significant impact on TCP delay due to the fact that these MAC layer
delays and losses were assumed to be caused by end-to-end congestion. Hence
TCP transmission timeouts occurred, which reduced the congestion window.

TCP SYN Flood. Another one of the more obvious attacks that we observed
was a TCP SYN flood directed at an external server on Port 80 involving over
6,000 connection requests. The attacker in question emitted three bursts of at-
tack traffic that began Thursday afternoon at 12:59:57 and numbered up to 109
packets per second for 30 seconds.

Figure 5 combines several of these measurement metrics during the initial
attack, which lasted for only 30 seconds. The peaks in the numbers of data
packets correspond to periods of attack. As shown in Figure 5(c), the aggregate
channel utilization for this particular access point, while elevated, was not near
bottleneck limits. What was most impacted by the SYN flood was the data retry
rate, which peaked in the midst of the attack. This result indicated a higher
rate of contention and collisions at the MAC layer due to the attacker’s rapid
transmission of single SYN packets. The result was an increase in the overall end-
to-end latency as the MAC layer struggled to reliably deliver packets. During
this attack, the average RTT increased by more than 33% with 16% of all frames
consisting of MAC layer retransmissions. At the peak of the attack, more than
30% of all frames were data retransmissions.

Additionally, the aggregate number of probe requests and probe responses
to and from all access points increased during the initial attack as illustrated
in Figures 5(b) and 5(d). This result indicates that the attacker may have ag-
gravated existing hidden terminal problems, thereby causing collisions and data
retries. This behavior then triggered nearby clients that were connected to the
same access point to begin probing for other access points offering better con-
nectivity. While these effects do not appear catastrophic, it is evident that the
probe responses and data retries increased by more than twice their averages
over regular traffic intervals. Analogous to the ICMP ping flood, the number of
probe responses more than doubled immediately after the attack. This behav-
ior occurred in response to the outstanding probe requests that were partially
blocked during the attack interval.

4.2 Effects of Malicious Flows on Wireless Performance

Our findings show that the presence of active malware in a congested wireless
network harms performance by reducing client transmission rates and increasing
data retries. The results also demonstrate that the end-to-end delay for TCP
connections rise commensurately with slower data rates and greater numbers of
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Fig. 5. TCP SYN flood effects on the wireless medium.

packet collisions. These effects would likely have a significant impact on real-
time applications. Under heavy utilization, access point management frames can
be obstructed and increase the delay in client handoffs, authentications, and
associations, further degrading performance. By comparing the effects of the
NetBIOS attack with the TCP SYN flood, we can determine that faster sending
rates and larger packets have a more significant effect on the wireless medium
since the channel is busy for longer periods of time. In addition, the 802.11 CSMA
protocol worked well in preventing small TCP SYN packets from dominating the
channel during malicious traffic flows.

5 Conclusion

The study of malware on wireless systems is becoming increasingly important
as more devices communicate openly over-the-air. In this paper, we analyzed
the effects that malware-driven attacks can have on 802.11 performance. The
most severe consequence is an increase in RTTs, which can hinder real-time
communication. Wireless quality of service is also virtually impossible without
developing mechanisms to reduce unwanted link layer contention.

The results that we present are from single attackers’ outgoing malware at-
tacks. Left unabated, the prevalence of malware will lead to a higher concentra-



tion of attackers and potentially deny service to legitimate users. This makes the
protection of connected machines an especially pertinent objective for wireless
network operators. In addition, as worms and botnets become more sophisti-
cated, we believe that the exploitation of wireless networks by mining sensitive
information from unencrypted transmissions will become routine. Malware will
also adapt to preserve its own anonymity by spoofing the source of attacks.
Consequently, the effects of multiple compromised machines on a single wireless
access point will become more significant as malware evolves to specifically ex-
ploit the wireless medium. Therefore, a lightweight solution will be essential to
ensure optimal network performance and protect users’ sensitive data.
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