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Abstract— With the advent of small form-factor devices, proto-
col standardization, and robust protocol implementations, multi-
hop mobile networks are witnessing widespread deployment.
The monitoring of such networks is crucial for their robust
operation. To this end, this paper presents DAMON, a distributed
system for monitoring multi-hop mobile networks. DAMON uses
agents within the network to monitor network behavior and
send collected measurements to data repositories. DAMON's
generic architecture supports the monitoring of a wide range
of protocol, device, and network parameters. Other key features
of DAMON include seamless support for multiple repositories,
auto-discovery of sinks by the agents, and resiliency of agents
to repository failures. We have implemented DAMON agents
that collect statistics on data traffic and the Ad hoc On-demand
Distance Vector (AODV) routing protocol. We have used our
implementation to monitor an ad hoc network at the 58th Internet
Engineering Task Force (IETF) meeting held November 2003 in
Minneapolis, MN. In this paper, we describe the architecture of
DAMON and report on the performance of the IETF network
using monitoring information collected by DAMON. Our network
monitoring system is available online for use by other researchers.

I. INTRODUCTION

Multi-hop mobile networks are currently experiencing
widespread deployment. This increase in deployment is driven
by advances in hardware and software technology, standard-
ization of protocols, and the emergence of new applications.
Examples of these applications include “last-mile” Internet
delivery, search and rescue, home networking, and distributed
gaming.

For the robust operation of mobile networks, it is crucial
that monitoring complements their increasing deployment.
Monitoring offers several benefits to network operators, system
designers, and researchers. It can provide network operators
with valuable insight into the state of the network, which
can in turn help them understand the network’s topology
and usage. Monitoring can also enable operators to perform
critical tasks, such as fault detection/isolation, necessary for
the robust operation of the network. In addition, operators can
use network monitoring to check for compliance of system
implementations with set standards. Compliance checks are
important because mobile networks are typically formed by
users who carry devices with heterogenous hardware and
software supplied by different vendors. System designers and

researchers can use monitoring to improve protocols and
systems through the analysis of collected network state. This
state can also help designers develop realistic data traffic, user
mobility, and wireless propagation models. Network simula-
tors, such as NS-2 [1] and GloMoSim [2], can then apply
these models to simulate real-world network behavior more
accurately [3].

Monitoring multi-hop mobile networks, however, is more
challenging than monitoring wired or single-hop wireless
networks. This is because of characteristics unique to mobile
networks, such as the lack of a hierarchical network structure,
network-wide device mobility, and routing challenges. As
a result, monitoring a network from a controlled network
element — a well-applied strategy in wired and single-hop
wireless networks — cannot be utilized for multi-hop mobile
networks. Consequently, popular monitoring tools that are
based on protocols such as the Simple Network Management
Protocol (SNMP) and the Internet Control Message Protocol
(ICMP) have limited utility in mobile networks.

To overcome the challenges of monitoring mobile networks,
tools must be tailored specifically for such networks. Our goal
is to address the need for such a tool with DAMON. DAMON
is based on a Distributed Architecture for MONitoring mobile
networks. Its generic architecture supports the monitoring of
a wide range of protocol, device and network parameters.
DAMON uses agents present within the network to monitor
and send information to a distributed set of monitoring sinks
or repositories that store the monitored information. Its key
features include seamless support for multiple repositories,
auto-discovery of sinks by agents, and resiliency of agents to
repository failures. These features enable network operators to
deploy, configure, and maintain DAMON with little effort.

We have implemented DAMON for the Linux and Microsoft
Windows operating systems. Our DAMON implementation
collects key statistics concerning data traffic and the Ad hoc
On-Demand Distance Vector Routing (AODV) protocol [4]. To
demonstrate its utility, we used our implementation to monitor
an ad hoc network at the Internet Engineering Task Force
(IETF) meeting held in Minneapolis, MN from the 9th to
the 14th of November 2003. The information gathered using
DAMON has given us valuable insight into the performance
of the deployed network.



The rest of this paper is organized as follows. In Sec-
tion I, we present our goals and design choices for DAMON
and discuss various challenges in meeting those goals. Sec-
tion 111 describes how DAMON overcomes those challenges
and presents DAMON's design in detail. In Section IV, we
discuss our implementation of DAMON. In Section V, we
present observations of the IETF network performance using
monitoring information collected by DAMON. In Section VI,
we review related work, and we conclude the paper in Sec-
tion VII.

Il. GOALS, DESIGN CHOICES, AND CHALLENGES

Mobile networking is an area of rapid technological ad-
vances in system design and networking protocols. For a
monitoring solution to cope with the pace of development, a
generic architecture is required that is capable of monitoring
any aspect of a deployed network. Our goal is to design
such a generic architecture. In meeting this goal, a monitoring
solution must address characteristics unique to such networks.
These characteristics make the design of the monitoring solu-
tion challenging. In this section, we first describe our goals and
design choices for DAMON and then describe the challenges
of meeting these goals.

A. Goals and Design Choices

Our design of a generic architecture for monitoring mobile
networks is guided by three design choices. These choices
relate to the pervasiveness of a monitoring solution, the
number of monitoring sinks or repositories, and the temporal
property of monitoring information. We elaborate on each of
the three choices below.

Pervasiveness of the Monitoring Solution: The
pervasiveness of a monitoring solution is determined by
the level of participation of nodes in the monitoring effort.
At one end of a pervasiveness spectrum lies a non-pervasive
technique where collection of network state is done by a
controlled network element that is not an active participant
in the network. At the other end is a pervasive technique
in which specialized agents hosted by nodes in the network
collect network state. As an example of the former, consider
a single-hop wireless network deployed using an access
point. By positioning a controlled network element close to
the access point, it can collect network state by sniffing the
traffic flowing in the wireless medium. Such a non-pervasive
technique, if applied in a multi-hop mobile network, can result
in the collection of information that leads to an inaccurate
analysis of the network state. This is because there could be
communication among nodes that is not heard by a controlled
network element. Consequently, monitoring multi-hop mobile
networks requires a pervasive solution, where participant
nodes actively collect network state and deliver the collected
information to a repository. Our goal, therefore, is to design
DAMON as a pervasive monitoring solution.

The pervasiveness aspect of such a solution, however, can
be minimized by installing agents at certain fully-capable

nodes — nodes where device parameters such as energy, disk
space, and processing power can be dedicated for monitoring.
This strategy, called limited coverage, is in contrast to a
complete coverage strategy where agents are installed at
every node. The limited coverage strategy can be effective
in some network configurations. For instance, consider a
multi-hop network that provides Internet connectivity to a
community. Because all the traffic is likely to flow through a
pre-determined, non-mobile set of fully-capable routers, these
routers can also function as monitoring agents. Our goal is
to make DAMON generic enough to support both the limited
coverage and complete coverage strategies.

Number of Sinks: The information collected by monitoring
agents is sent to sinks that serve as repositories for collected
information. Depending on the size of the network, the
functionality of a sink can either be centralized (single sink)
or distributed (multiple sinks). A centralized monitoring sink
is suitable for a small network. In large networks, however, a
centralized sink can result in poor spatial reuse of the wireless
medium, congestion of routes to the sink, and excessive load
at the sink. For such networks, the repository functionality
can be distributed among several sinks that optimally are
either non-mobile or less mobile compared to other nodes.
The monitoring sinks can then use back-channels to aggregate
their stored information.

As an example of such a distributed sink setup, consider a
community multi-hop network deployment where routers are
equipped with multiple wired/wireless interfaces. An example
of such an architecture is the Transit Access Point (TAP)
architecture [5]. In such an architecture, selected wireless
routers can then function as monitoring sinks by using their
back-channels for the aggregation of the collected information.

Our goal for DAMON is to take advantage of multiple
sinks if they are available. In this way, DAMON avoids the
drawbacks associated with a centralized sink setup.

Temporal Property of Monitoring Information: The
temporal property of monitoring information is determined
by the monitoring requirements. For example, consider a
requirement such as tracking network topology in real-time.
If topology information from the network is not delivered
for processing in a timely manner, the resulting view of
the network can be inaccurate. On the other hand, another
requirement could be to obtain a log of all packets forwarded
by a node without any constraints on time.

Based on its temporal property, information collected from
the network can be classified into two types: time dependent
information and time independent information. Our goal is to
design DAMON such that it distinguishes between these two
types. In this way, the information can be processed seperately.
Higher delivery priority can be given to time dependent
information as compared to time independent information.



B. Challenges

In realizing the goals described above, several challenges
unique to mobile networks must be addressed. The various
challenges are briefly discussed below.

Device mobility: With mobility, a route to a destination
typically changes. This can result in a sink that is reachable be-
coming unreachable after movement. Moreover, mobility can
cause transient breaks in a connection between an agent and a
sink, thereby preventing the delivery of collected information.
Resour ce Constrained Devices: Participant devices in mobile
networks are typically resource constrained. These devices are
characterized by low processing power, limited disk space, and
low energy. The allocation of limited resources for monitoring
can result in poor system performance.

Fluctuating Link Qualities: The dynamic characteristics of a
wireless link, such as multi-path fading and interference from
the environment, can result in widely varying fluctuations in its
quality. Link quality fluctuations are likely to result in routing
path challenges, which in turn can lead to breaks in established
connections between an agent and a sink. This can interfere
with the delivery of monitoring information.

Short-lived Network Connections: An effect of mobility and
fluctuating link qualities is that connections between an agent
and a sink can be short-lived. Short-lived connections can
prevent the delivery of monitoring information.

I1l. DAMON DESIGN

This section describes the DAMON design. DAMON uses
several techniques to overcome the challenges discussed in
Section Il. An overview of the techniques is presented first,
followed by a more detailed description.

A. Overview

DAMON uses an agent-sink architecture for monitoring
mobile networks. Its agents are hosted by participant nodes
in the network and discover the presence of sinks automat-
ically. Furthermore, agents are resilient to monitoring sink
failures, i.e., after the failure of a monitoring sink, because
of mobility, network congestion or the sink itself crashing,
agents automatically switch their choice of the monitoring
sink and send collected information to a different sink. The
auto-discovery and resilient nature of agents are facilitated by
periodic beacons initiated by sinks.

DAMON classifies monitoring information as time depen-
dent information and time independent information. Time de-
pendent information is packaged into Time Dependent Digests
(TDDs) before delivery to a sink. Examples of TDDs include
the energy left on the device or the identity of a node's
neighbors. Because such TDDs are typically small in size,
DAMON allows multiple TDDs to be aggregated. Intermediate
agents on a path from the source of the TDD to a monitoring
sink can aggregate their TDDs with the TDD being forwarded.
On the other hand, time independent information (packet logs
for example) is likely to be larger in size than TDDs. It
is, therefore, packaged into small-sized, sequence-numbered
“chunks” called Time Independent Digests (TIDs). DAMON

supports the retransmission of TIDs by using their sequence
numbers to keep track of which TIDs have been successfully
delivered to a sink. TDDs and TIDs are delivered to the sink
using routes discovered by the network routing protocol.

By supporting sink auto-discovery and resiliency to sink
failures, DAMON overcomes challenges associated with de-
vice mobility. By supporting the retransmission of digests, DA-
MON overcomes challenges associated with failed information
delivery because of mobility, fluctuating link qualities, and
short-lived connections. To minimize the overhead on resource
constrained devices, DAMON agents can be installed on fully-
capable devices if they are present.

The remainder of this section describes the DAMON design
in more detail. Presented next is a description of the sink
auto-discovery process, followed by a discussion of the agent
framework.

B. Sink Auto-discovery

The self starting and resilient nature of DAMON agents is
facilitated by periodic beacons originated by monitoring sinks.
These beacons, which are broadcast network-wide, serve to
advertise the presence of a sink. Beacons also contain agent-
instructions. Agent-instructions can be updated by the network
operator to suit changes in monitoring requirements. This
enables agents to automatically adapt to the new requirements.

The propagation of beacons is controlled by the agents.
Upon receiving a beacon, an agent rebroadcasts the beacon
in the following two cases: (1) the monitoring sink advertised
in the beacon is the first sink learned by the agent, or (2)
if the monitoring sink advertised in the beacon is the closest
sink to the agent. Proximity to a monitoring sink is determined
by using the hop count field carried in each beacon. The hop
count gives the number of hops the beacon has traversed before
reaching the agent. The proximity check performed by agent
nodes prevents the needless flood of beacons in the presence
of multiple monitoring sinks. After the proximity check is
performed, the agent adds, in a table, an entry that corresponds
to the sink advertised in the beacon. This table ranks all sinks
the agent has learned based on proximity. The agent then
chooses the first entry in its table as its primary sink. Each
entry in the table has a lifetime associated with it, which is
updated whenever a beacon is received. Lifetimes are used to
identify and remove any stale entries in the table.

With mobility, proximity-based association may result in an
uneven distribution of agents with sinks. We believe, however,
that proximity based association is a simple and low overhead
technique for associating agents with sinks. Figure 1 illustrates
the sink auto-discovery process. In Figure 1(a), sinks broadcast
beacons advertising their presence. Figure 1(b) illustrates the
association of agents with its primary sinks.

In the sink auto-discovery process, the beaconing interval
used by sinks affects how quickly agents discover sinks. There
is a tradeoff between choosing a small beaconing interval
for quick sink detection and the extra packet overhead due
to frequent beacon flooding. Also, agents at the periphery of
the transmission range of a sink or another agent can receive
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beacons intermittently. This can happen for example in areas
called “gray-zones”, where different packets are received with
varying probabilities based on factors such as packet size and
transmission rate [6]. Intermittent reception of beacons can
result in unnecessary switching of the primary sink. To prevent
this oscillation, an agent replaces its choice of the primary
sink only when a predetermined number of successive beacons
(three in our implementation) are successfully received.

C. Agent Framework

Figure 2 illustrates the architectural framework of the mon-
itoring agent. When a packet relevant' to DAMON arrives
from the network, it is first captured? and then delivered to
the Packet Classifier module. The Packet Classifier categorizes
packets based on their type and dispatches them to the appro-
priate Packet Handlers. Packet Handlers implement a specific
operation on the received packet. For example, the Beacon
Listener module handles sink beacons, whereas the TDD
Dispatcher module handles TDDs received from other nodes.
The TDD Dispatcher aggregates received TDDs with TDDs
generated locally. The aggregation is simply the packaging
of payloads from two different TDDs into the payload of
a single TDD. Other proposed techniques for aggregation
could also be applied [7], [8]. The aggregation operation is
affected by criteria such as limits on digest size, the maximum

1Relevance is dependent on the monitoring requirements.
2The capture of relevant packets is done by an implementation specifi ¢
module on the host operating system that can receive network traffi c.

transmission unit (MTU), as well as privacy and security. The
Collector modules handle all other types of packets. A col-
lector module implements a specific monitoring requirement
such as summarization® of routing table information or link
quality estimates in TDDs or TIDs.

Digests created by the Collector modules are classified by
the Digest Classifier module. This module delivers digests
either to the TDD Dispatcher for immediate delivery to the
primary sink or to the File Server module. The File Server
stores all digests on the local disk for later delivery to the
primary sink. Digests stored by the File Server are then
retrieved by the TID Dispatcher for transmission to the sink.
The stored Digests are assigned monotonically increasing
sequence numbers. The sequence numbers are used by the
TID Dispatcher to track which digests have been successfully
delivered to the sink. In addition to storing TIDs and assigning
them sequence numbers, the file server ensures that the size
of the stored digests does not exceed a certain limit to prevent
disk overflow. Disk overflow can happen if an agent is unable
to deliver digests to any sink because of sink failures. Overflow
is prevented by using a simple First-In-First-Out (FIFO) policy
to purge digests. This purging of digests can result in “gaps”
in the monitoring information, which can make the interpreta-
tion of the collected information particularly challenging. To
handle gaps, tools for the analysis of network state should be
designed to minimize the impact of missing information.

3The format for summarizing information in digests is implementation
specifi c.



1V. DAMON IMPLEMENTATION

Our goal for the DAMON implementation is to provide
a monitoring solution for ad hoc networks utilizing the Ad
hoc On-demand Distance Vector (AODV) routing protocol [4].
Specifically, we want our implementation to collect AODV
and data traffic statistics to enable off-line analysis of network
performance.

To aid the reader in understanding the implementation, an
overview of AODV is presented first, followed by a detailed
description of the DAMON implementation.

A. AODV Overview

AODV is an on-demand ad hoc routing protocol. For neigh-
bor detection, AODV can use either broadcast HELLOs or link
layer feedback. Route discovery is based on a route request,
route reply cycle. Route discovery begins with a broadcast
Route Request (RREQ) message. The RREQ contains the des-
tination IP address for the requested route and the destination's
last known sequence number. Destination sequence numbers
in AODV are used to ensure loop-free operation. As the RREQ
is propagated throughout the network, each intermediate node
creates a reverse route entry towards the originator (source) of
the RREQ. An intermediate node forwards only the first RREQ
it receives from the originator. If the destination-only flag is
set in the RREQ message, only the destination is allowed to
issue a Route Reply (RREP). If the destination-only flag is not
set in the RREQ, an intermediate node is allowed to issue an
RREP provided it has an active route towards the destination.

The RREP message is unicast towards the source along the
reverse route setup during RREQ propagation. As the RREP
is propagated, intermediate nodes on the reverse route create a
forward route entry for the destination node in their respective
route tables. When an active route breaks, the node in the route
that detects the break has the option of doing a local repair
by finding another route towards the destination, or sending a
Route Error (RERR) message towards the source to notify it
of the break.

B. Implementation

We implemented DAMON using Perl. Our agent consists
of two collector modules. The first collector, called the AODV
collector, gathers AODV protocol information. This collector
also provides topology data for tracking the network topology
in real-time. The second collector, called the data traffic col-
lector, gathers data traffic statistics. We implemented these two
collectors for measuring metrics such as the packet delivery
ratio, route discovery latency, and network throughput. Using
such metrics, the performance of a network can be evaluated.
More details about the two collectors are given below.

The AODV collector summarizes RREQ, RREP, RERR,
and HELLO control messages in an AODV-CONTROL TID
in the following manner. For each RREQ, RREP, and RERR
that a node originates and receives, the collector records
the UDP payload of the control packet and the time the
packet was sent. HELLO payloads are not captured because
neighbor connectivity information is recorded in the routing

table snapshots. For each RREQ, RREP, and RERR that a
node forwards and for each HELLO that a node receives, the
collector increments a control-packet specific counter by one.
Each minute, the counter values are stored by the collector in
a AODV-CONTROL TID and then reset to zero. Additionally,
the AODV collector records routing table updates (deltas),
with the time the update occurs, in a AODV-RT-TABLE TID.
The collector, in addition to creating TIDs, also creates TDDs
called AODV-NEIGHBOR TDDs periodically (one minute in
our implementation). The TDDs contain information about the
node's neighbors and the quality of the link to each neighbor.

The traffic collector gathers traffic statistics from all data
packets sent and received by the node. For each data packet,
the collector records the IP source and destination fields, appli-
cation protocol type, and packet size in a DATA-STATISTICS
TID.

The two collectors package TIDs such that they do not
exceed one megabyte each in size. This is done to prevent
short-lived connections with a sink from preventing the de-
livery of digests. The agent periodically sends TIDs to the
sink using TCP; in our implementation this occurs every ten
minutes. TDDs, on the other hand, are sent using UDP. This
is because the TDDs in our implementation do not require
reliable delivery since they only carry neighbor information
and are re-sent every 60 seconds.

V. CASE STuDY: IETF EXPERIMENT

We used our DAMON implementation to monitor an ad hoc
network deployed during the 58th Internet Engineering Task
Force (IETF) meeting. The meeting was held in Minneapolis,
MN from the 9th to the 14th of November 2003. The purpose
of the network deployment was to enable the formation of a
publicly accessible ad hoc network utilizing the AODV routing
protocol in a heterogenous environment such as the IETF. The
heterogenous environment was a result of meeting participants
carrying hardware and software supplied by different vendors.

Our goals for the DAMON deployment were fourfold: (1)
to validate the design and implementation of DAMON, (2)
to track the topology of the IETF network in real-time, (3)
to evaluate the performance of AODV in the IETF network,
and (4) to observe realistic traffic and mobility patterns in the
network.

In this section, we first describe the configuration of the
IETF ad hoc network. We then discuss how we used informa-
tion collected by DAMON to troubleshoot a network outage
we encountered during the experiment. This section ends with
a description of the traffic distribution in the ad hoc network
as observed by DAMON.

A. Network Configuration

To enable attendees at the meeting to participate in
the ad hoc network, we provided implementations of
the AODV routing protocol for the Linux 2.4 and Mi-
crosoft Windows XP operating systems. For the IETF DA-
MON deployment, we adopted a complete coverage strat-
egy to obtain the comprehensive state of the ad hoc
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network. We, therefore, distributed the implementation of
our DAMON agent along with the AODV implementa-
tion.

One node in the ad hoc network was configured to act
as an Internet gateway. Hence nodes in the ad hoc network
could obtain (possibly multi-hop) paths to the Internet. Internet
connectivity was also provided at the conference via an IEEE
802.11b single-hop wireless network that consisted of 23 Cisco
1200 access points distributed on three floors of the meeting
venue. The ad hoc network was co-located with these access
points.

Because of the heterogenous nature of the ad hoc network,
unidirectional links were a possibility. A unidirectional link is
capable of transmitting packets in only one direction. Because
AODV assumes that all links are bidirectional, unidirectional
links have been shown to negatively impact the performance
of a multi-hop network [9].

To prevent AODV from trying to utilize a path with one or
more unidirectional links, each node ran a unidirectional link
detector called PUDL. To avoid unidirectional links, PUDL
estimates the reliability of each link between a node and its
neighbors by periodically sending sequence numbered unicast
probes in both directions on the link. It then measures the gap
in the sequence numbers of received probes to estimate the link
reliability. A link that is less reliable than a certain threshold
(40% in our implementation) is classified as unidirectional.
The AODV routing protocol then avoids any link classified as
unidirectional.

Since we did not anticipate the formation of a large ad
hoc network at the meeting, we decided to use only one
sink in our DAMON deployment. Therefore, agent-to-sink
associations were done using a static configuration in the
agent implementation. The sink node was equipped with an
additional network interface connected to a wired network.

This interface connected the sink via the Internet to a server
located at UC-Santa Barbara. This server was used as a backup
repository for the information collected during the experiment.
The server also used the AODV-NEIGHBOR TDDs sent by
agents in the network to create a map of the network topology.
This map was then made available in real-time on a web-site.
Figure 3 shows one such map of the network topology taken
as a screenshot on a Microsoft Windows machine that was a
participant in the ad hoc network.

B. Troubleshooting Study

During one IETF session held between 13:00 - 15:30 CST
on November 11th, nodes in the ad hoc network experienced
intermittent connectivity with the Internet. Upon investigation,
we noticed that PUDL was classifying a majority of each
node's neighbors as unidirectional. Because neighbors were
classified as unidirectional, stable routes to the Internet gate-
way were not formed, and consequently, connectivity with the
gateway was unreliable.

To further understand the problem, we looked at the moni-
toring information collected by DAMON agents. Specifically,
we focused on the period between 13:09 and 13:21 CST when
there were seven nodes in the network. These seven nodes
were co-located in the same conference room (an area of
18x30 square meters). Table I shows the percentage of AODV
HELLO and PUDL Probe messages received by the agent
running on the Internet gateway from nodes in the network
during the 12 minute period. To calculate the percentages
given in the table, we consider the periodicity with which
HELLO and Probe packets are sent. The periodicity then lets
us estimate the number of HELLO and Probe packets expected
from a node in a given time period. The resulting estimates,
along with the actual number of HELLO and Probe packets
recorded by the agent, gives the percentages shown in the
table.



[ Node ID | % Broadcast HELLO | % Unicast Probes |

1 91.80 74.10
2 76.26 12.69
3 92.06 36.00
4 74.73 42.18
5 69.23 54.10
6 95.42 11.40
7 97.85 6.66
TABLE |

HELLO AND PUDL PROBESRECEIVED BY THE GATEWAY AGENT FROM
EACH NEIGHBOR.

There are multiple observations that can be made from the
data presented in the table. First, both broadcast and unicast
messages suffer losses, and some nodes suffer significant
losses compared to others. For example, only 69% of HELLOs
from node 5 are recorded by the agent compared to 97%
of HELLOs from node 7. Furthermore, a significantly higher
percentage of broadcast messages are received than unicast
messages. As an example, almost 98% of HELLOs from node
7 are received compared to only 6% of Probes. Finally, there
is no correlation between the loss of HELLOs and Probes; i.e.,
predicting the loss of unicast messages by looking at the loss
of broadcast messages, or vice-versa, can lead to inaccurate
conclusions. For example, consider nodes 4 and 7. Node 4
delivers just 74% of its HELLOs compared to 97% by Node
7. However, 42% of Probes sent by Node 4 are received by
the gateway compared to only 6% by Node 7.

One of the primary reasons for the high loss rate was
because the nodes were operating in a heavily loaded (23
access points and several hundreds of users connected to
those access points), and thus very noisy, environment. To
maximize the network throughput, we had statically configured
the AODV implementations to transmit data packets at the
highest data rate of 11Mbps. High data rates, however, require
a low bit error rate. The noisy and heavily loaded environment
adversely affected the bit error rate. Because of this, the
wireless hardware was unable to successfully deliver probes
at 11Mbps.

Based on the above observations, we make the following
conclusions:

« Relying on thresholds to avoid unidirectional links can
eliminate links that are necessary for connectivity: We
used the 40% threshold in various tests performed with
our implementation before the IETF experiment. This
threshold value, however, was not suitable for the noisy
IETF environment. This resulted in poor network per-
formance during the IETF session. Our experiences,
therefore, suggest that a threshold scheme can result in
satisfactory performance in one network environment, but
can result in poor performance in a different environment.
Consequently, alternate techniques for avoiding unidirec-
tional links are needed.

« Routing protocols should select routes based on how reli-
ably a path delivers unicast packets: Many current routing
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protocols use broadcast packets to discover routes. The
above observations suggest that using a purely broadcast-
based mechanism to discover routes can result in the
selection of paths that poorly deliver unicast data packets.
Routing protocols, therefore, should consider the reliabil-
ity of unicast packet delivery during route discovery.

C. Traffic Distribution

In this section, we present our preliminary analysis of
the traffic distribution during the IETF. Figure 4 shows per-
protocol traffic distribution as monitored by an agent within
the ad hoc network during the network outage previously
described. The data presented in the figure is from a 50
minute log of monitoring information collected between 13:38
and 14:28 CST on November 11th. The figure shows that
approximately 42% of all messages were AODV control
packets. Almost 30% of the AODV control packets were
HELLO messages; HELLOs made up approximately 13% of
all monitored traffic. The remainder of the AODV control
packets were RREQs (55%), RREPs (13%), and RERRs (2%).
ICMP messages made up approximately 45% of the overall
traffic. Of this percentage of ICMP messages, only 2.5%
were ICMP Destination Unreachable packets. The rest of
the ICMP messages were ICMP Request/Response packets.
PUDL probes account for roughly 10% of the overall traffic.
Because the node from which we collected this information
was experiencing intermittent connectivity with the Internet
gateway, only 2.3% of the overall traffic was TCP traffic
carrying SSH/HTTP protocol packets.

Figure 5 shows the traffic distribution by protocol as moni-
tored by an agent during a session held between 21:40 and
22:10 CST on 12th November 2003. For this session, we
turned off link filtering at all nodes to prevent the elimination
of links necessary for connectivity. The figure shows that
approximately 66% of all packets were AODV control packets.
Of all AODV packets, about 38% were HELLO packets.
The remainder of the AODV control packets were RREQs
(51%), RREPs (10%), and RERRs (1%). Approximately 33%
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Fig. 5. Per-protocol Traffi ¢ Distribution without Unidirectional Link Filter-

ing.

of the overall traffic was composed of TCP traffic (SSH/HTTP
protocol traffic).

Based on the traffic distributions, we can make three obser-
vations. First, the utilization of HELLO messages for neighbor
detection can result in considerable traffic overhead. Alternate,
low overhead techniques, such as detecting neighbors using
link layer feedback, should be used. Second, the high number
of RREQs recorded is because the ad hoc nodes were not
configured with a default gateway setting. Consequently, each
ad hoc node would issue a route request, even for external
addresses, to which the gateway would subsequently send a
route reply. In order to reduce the number of RREQs issued by
a node, ad hoc nodes should send packets destined to external
addresses to their default gateway instead of performing a
route discovery. Third, user behavior can be predicted by the
traffic distribution. For example, Figure 4 suggests that users
use ICMP to check for network connectivity during a network
outage, while Figure 5 suggests that users with connections
to servers on the Internet do not use ICMP to check network
connectivity. Based on such characterizations of user behavior
and traffic distributions, it is feasible to create realistic user
and traffic models that can enable network simulators model
real-world network behavior more accurately.

VI. RELATED WORK

A wide array of monitoring tools are available for wired net-
works. Early tools developed were traceroute and ping. Other,
more recent tools make use of standardized management
protocols such as the Simple Network Management Protocol
(SNMP) to achieve sophisticated monitoring requirements.
These tools can be classified into two main types: tools
that rely on information from within the network, such as
information collected from network routers (BGP state for
example); and tools that rely on end-to-end monitoring to
collect network state. Examples of the former are Rocketfuel
[10] and MANTRA [11]. Example of the latter are ScriptRoute
[12] and King [13]. Such tools have lead to several studies

that give valuable insight into the performance of deployed
protocols and networks [14], [15], [16].

In the area of monitoring infrastructured wireless networks,
there is a general lack of monitoring tools that are available to
the community. Some proprietary tools are supplied by access
point vendors such as Cisco, Netgear, and Proxim. These tools
are typically installed on the device itself and facilitate access
to monitoring information via SNMP or HTTP. Nevertheless,
numerous studies have analyzed the performance of such
networks using these tools [17], [18], [19], [20].

In the area of sensor networks, other tools exist [7], [8]
that come close to the functionality provided by DAMON.
However, these tools are designed specifically for sensor
networks. Furthermore, these tools do not have many of
DAMON's features such as support of multiple sinks, sink
auto-discovery, and resiliency to sink failures.

VI1lI. CONCLUSION

The monitoring of mobile networks is crucial for their ro-
bust operation and should complement their increasing deploy-
ment. Monitoring offers several benefits to network operators,
system designers, and researchers. The benefits range from
the maintenance of deployed networks to the improvement of
protocols and systems.

In this paper, we proposed DAMON, a monitoring system
based on a distributed architecture for monitoring mobile
networks. DAMON uses agents within the network to send
collected information to monitoring sinks. Its key features
include support for multiple sinks, sink auto-discovery, and
the resiliency of agents to sink failures. These features enable
network operators to deploy, configure, and maintain DAMON
with little effort. We have implemented DAMON for the
Microsoft Windows and Linux operating systems. We have
made our implementation available to the community for
research and deployment purposes®. We demonstrated DA-
MON’s utility by reporting on the performance of an ad hoc
network deployed at the 58th Internet Engineering Task Force
meeting held in Minneapolis, MN.

As future work, we would like to develop a suite of analysis
tools for interpreting information collected by DAMON. Also,
our goal is use DAMON to monitor a large scale multi-hop
network being deployed in the UC-Santa Barbara campus and
at a student community on the outskirts of the campus.
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