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Abstract —Wireless networks have evolved into an important technology
for connecting users to the Internet. As the utility of wireless technology
grows, wireless networks are being deployed in more widely varying
conditions. The monitoring of wireless networks continues to reveal key
implementation deficiencies that need to be corrected in order to improve
protocol operation and end-to-end network performance. In wireless net-
works, where the medium is shared, unwanted traffic can pose significant
overhead and lead to suboptimal network performance. Much of the pre-
vious analyses of unwanted traffic in wireless networks have focused on
malicious traffic. However, another major contributor of unwanted traffic is
incorrect link layer behavior. Using data we collected from the 67

th Internet
Engineering Task Force (IETF) meeting held in November 2006, we show
that a significant portion of link layer traffic stems from mechanisms that
initiate, maintain, and change client-AP associations. We further show
that under conditions of high medium utilization and packet loss rate,
handoffs are initiated incorrectly. We analyze the traffic to understand
when handoffs occur and whether the handoffs were beneficial or should
have been avoided.

1 INTRODUCTION

IEEE 802.11-based WLANs have experienced rapid growth in
recent years as the chief means of providing Internet con-
nectivity to users. Large WLAN deployments are popular in
locations such as conferences, university campuses, hotels,
and airports. A 2006 survey1 shows a significant increase
in mobile application deployment in North American enter-
prises (as compared to 2004) wherein 63% already use in-
house WLANs and 58% plan to increase their WLAN invest-
ment. These networks are characterized by a large number
of access points (APs) that are densely deployed to support
network usage by many simultaneous users. Dense AP de-
ployment helps ensure that the overall user demand is met
and network coverage is provided, especially if users are mo-
bile.

One of the limitations of IEEE 802.11 WLANs is the limited
number of orthogonal channels, three in the case of 802.11b/g
and 12 in the case of 802.11a. Because there is a limited number
of orthogonal channels, it is commonly the case that a large
WLAN deployment has several APs within range of each other,

1. http://www.forrester.com/Research/Document/Excerpt/-
0,7211 ,40720,00.html

and often multiple of these APs are configured to transmit on
the same channel. Large WLAN deployments are hence likely to
suffer from high interference and high loads. This is particularly
true when WLANs need to support flash crowds, which are
defined as sudden surges in the number of users attempting to
connect to and access the WLAN [1]. Increased interference
and load gives rise to several problems such as intermittent
connectivity, low throughput and high losses, resulting inan
unreliable network and sometimes a complete breakdown.

To investigate the prevalence of the aforementioned prob-
lems in WLANs, we collected traces from the67th Internet
Engineering Task Force (IETF) meeting held in San Diego in
November 2006. The network consisted of over 100 APs on
both 802.11a and 802.11g networks, and was used by more
than 1200 users over a span of five days. We collected both the
802.11a and 802.11g traces for four of the five days, resulting
in, to the best of our knowledge, the most comprehensive trace
of a large conference WLAN to date. Our analysis of the traces
shows that the network suffered from high interference and loss
rates. There was significant overhead on the clients and APs
to transmit a single frame of useful data. Repeated association
and reassociation attempts, due to lost connections, aggravated
the problem. The result was that clients could only maintain
a short association period with an AP, leading to both sub-
optimal network performance and deterioration in application
performance.

Unwanted traffichas been used to refer cumulatively to those
traffic components originated directly or indirectly either by
malicious or “non productive ” activities [2]. Much of the
previous analysis of unwanted traffic in wireless networks has
focused on malicious traffic. However, another major contributor
of unwanted traffic are the applications that aggressively attempt
to maintain connectivity and high quality client service, leading
to undesirable traffic on the link layer. Through the analysis
of the IETF traces, our goal is to understand the causes for
high overhead and short association times of clients. We observe
that a significant portion of the network overhead stems from
mechanisms that initiate, maintain, and change client-AP con-
nectivity. We show that much of this traffic is unnecessary, and
actually compounds the problem of maintaining client-to-AP



associations. We identify two such mechanisms that contribute
to unwanted traffic on the wireless network:

• Keepalive traffic that is used to maintain client-AP associ-
ations in the absence of data traffic.

• The probing mechanism used by clients to frequently
collect neighbor information.

Unwanted traffic is detrimental to the performance of large
wireless networks such as that deployed during the IETF as
it leads to missed transmission opportunities and inefficient
medium utilization. As a result, clients erroneously conclude that
they have lost their connections to their APs, and hence initiate
handoffs. As congestion increases, the rate of handoffs increases,
even in the absence of mobility. We show that a majority of
these handoffs are unnecessary and at times negatively impact
throughput, wherein the clients’ throughput suffered immedi-
ately following a handoff.

Analysis of such unwanted traffic is very important to under-
stand and improve the performance of congested networks. We
believe that the problems identified in this trace are not unique
to the IETF network. These problems can occur in any wireless
network, particularly large networks that are deployed to support
many simultaneous users. Recent studies have identified key
implementation deficiencies in frame retransmissions, frame
sizes and rate adaptation in congested networks [3], [4], [5].

Our study continues to identify key deficiencies in the 802.11
protocol and its implementations in adapting to conditionsof
high usage and congestion. These insights will be useful in de-
signing systems and protocols that are more adaptive to network
conditions. We believe that through protocol improvement and
better implementations, the ability of large scale networks to
handle high loads can be significantly enhanced.

In an earlier work, we analyzed the handoff behavior of clients
in congested environments [6]. We showed that clients perform
handoffs at a high rate in a congested network, some of which
lead to a throughput deterioration. In this paper, we make the
following contributions:

• We show that client overhead increases with the increase
in network density.

• We analyze the two types of overhead mechanisms that are
prominent in a congested network - probes and keepalive
packets.

• We show that the handoff rates increase with an increase
in network utilization, even in the absence of mobility.

• We perform handoff analysis for different card vendors, and
show that the behavior of cards across vendors is relatively
consistent.

The remainder of this paper is organized as follows. Section2
presents the related work and motivates the study of unwanted
traffic and client associations. An overview of 802.11 frame
types and the handoff process is described in Section 3. In
Section 4, we provide details on the IETF network, monitoring
methodology and the network usage characteristics. Section 5
discusses our findings on the unwanted traffic in the IETF
network. We report our analysis on handoff behavior observed
in section 6. Finally, we conclude our work in Section 7.

2 RELATED WORK

Over the last few years, several studies have examined wireless
network traces to understand the usage and performance of
these networks. Starting with studies that focus on analysis
of wireless network usage in campuses [7], [8], metropolitan-
area networks [9] and mobility models [10], research has pro-
gressed to analyze the performance of these networks, including
application workloads and session durations [11], [12]. These
studies were based on the analysis of wired distribution network
traffic and polled SNMP management data. As a result, these
studies focus onhownetworks were used and how they perform
but do not provide insights intowhy the networks operated or
applications performed in a particular way.

To address this gap, recent studies have analyzed traces cap-
tured from the wireless side of the network using monitors. Yeo
et al. were one of the first to capture link layer information and
analyze the performance of a campus network [13]. This work
identifies the challenges of wireless monitoring and explores the
feasibility of merging traces from multiple sniffers usingbeacon
frames.

Jardoshet al. monitored the IETF conference and analyzed
link layer traces to understand congestion in wireless net-
works [3], [5]. Their work identifies some key deficiencies of
the 802.11 protocol in congested environments with respectto
rate adaptation, frame sizes and the RTS-CTS mechanism.

Rodrig et al. collected link layer traces from the SIGCOMM
conference and analyzed the causes for high retransmissionrates
in the network [4]. Their work identifies that both contention and
wireless transmission errors are the cause for retransmissions,
and retransmissions due to contention affect rate adaptation in
an incorrect way. Congestion-aware rate adaptation policies that
take medium utilization into account have shown up to a 300%
increase in throughput in congested environments, compared to
other well known adaptation schemes [14].

While much of the previous work focused on the effect
of congestion on retransmissions and rate adaptation, noneof
the studies focused on unwanted traffic on the wireless side.
Prior studies in unwanted traffic have focused on malicious
traffic in WLANs [2], [15]. However, unwanted traffic can
result from protocol operations, and an inability of the protocol
implementations to adapt to the environment. We show that
such traffic can result in significant overhead and performance
deterioration in the network.

A number of studies have evaluated the performance of
802.11 handoff mechanisms. Mishraet al. performed an em-
pirical analysis of handoffs using cards from several ven-
dors and identified that the probe mechanism is the main
cause of handoff latency [16], and that this latency is sig-
nificant enough to reduce application performance. Several
improvements have been suggested to perform faster hand-
offs [17], [18], [19]. Recent studies have also shown that
the current AP selection and triggering mechanisms are sub-
optimal. Mhatreet al. showed that the use of long term iav-
eraged signal strength instead of instantaneous signal strength
measurements results in better handoff decisions [20]. Po-
tential bandwidth available after the handoff [21] and the
quality of the AP’s connection to the Internet [22] have



Management Frame Subtype Description
AUTH Authentication Frame Used by clients and APs for exchanging credentials.
DEAUTH Deauthentication Frame AP sends to a client when it wishes to terminate secure communication.
ARQ Association Request Client sends to AP when it wishes to connect to the AP.
ARP Association Response AP responds to the client’s request with acceptance or rejection.
RRQ Reassociation Request Client sends to a new AP when the connection with the old AP hasbeen lost.
DASS Disassociation Frame Client or AP use this frame to terminate an association.
BCN Beacon Frame AP sends periodically to announce its presence.
PRQ Probe Request Client broadcasts to obtain information on neighboring APs.
PRP Probe Response AP sends information in response to a probe request.

TABLE 1
Overview of IEEE 802.11 management frame types.

been suggested as better AP selection mechanisms than signal
strength.

The above handoff studies are conducted on experimental
testbeds in controlled conditions, and do not analyze protocol
behavior in real settings. We believe that understanding how
handoff mechanisms operate in a real network is essential to
improve the existing algorithms. In our work, we show that
current handoff mechanisms do not differentiate losses based
on congestion. State of the art techniques such as beacon loss
cannot be used to initiate handoffs in a congested network where
the loss rate is high. We believe that the insights gained from
this work will help in the design and implementation of better
handoff techniques for large WLANs.

3 IEEE 802.11 FRAME TYPES

Before we analyze our collected traces for unwanted traffic and
handoffs, we begin with a brief overview of the various 802.11
frames and the role of each of the frame types in the client-AP
association process. We limit the scope of this descriptionto
the aspects essential for understanding the protocol operations
discussed in the paper.

The IEEE 802.11 standard defines three frame types: 1)
Management; 2) Control; and 3) Data. Management frames en-
able the stations to establish and maintain connections. Control
frames assist in the delivery of data frames. Data frames carry
the application data and header information. Each frame type
is comprised of several subtypes, each of which is used for
a specific purpose in the protocol operation. Since we focus
primarily on the analysis of management traffic in this paper, we
limit the scope of this section to management frame subtypes.
Table 1 summarizes the management frame subtypes and their
role in the client-AP association process.

Handoff procedure: A client that wishes to join a network
begins by authenticating itself to the AP. On successful au-
thentication, the client sends an association request along with
its radio capability information, such as supported data rates.
The AP allocates resources for the client and sends its own
information such as association ID and supported rates. Once a
client is authenticated and associated, it can communicatewith
other clients through the AP as well as other systems on the
distribution side of the AP.

When a client moves and loses connectivity to the AP, it starts
gathering information on the APs present within its vicinity by
broadcasting probe messages. The client receives responses from

potentially multiple APs, and based on some implementation-
dependent policy, it sends a reassociation request to one ofthe
APs. The AP responds with either a success or a failure. On a
successful response, the client is associated with the new AP.
This process is called aLayer 2 (L2) handoff. In some cases,
such as enterprise networks, the pre-handoff AP exchanges
client-specific context information with this new AP.

A L2 handoff consists of four phases i) triggering; ii) dis-
covery; iii) AP selection; and iv) commitment [17], [20]. In
the trigger phase, a handoff is initiated when a wireless client
identifies the need to associate with another AP. When a trigger
is generated, the client collects information about the APsin the
vicinity, called the “discovery” phase. In the “selection”phase,
the client identifies one AP that meets the particular vendor-
specific performance criterion, usually signal strength. In this
case, clients associate with the AP with the highest value of
the Received Signal Strength Indicator (RSSI). Finally, inthe
“commitment” phase, the client disassociates with the current
AP and reassociates with the new AP.

4 DATA COLLECTION METHODOLOGY

In this section, we first describe the IETF wireless net-
work architecture. We then explain our monitoring frame-
work, and finally, some of the challenges of this frame-
work.

4.1 The 67th IETF Network Configuration and Data
Collection Framework

The IETF network consisted of 55 Cisco and D-Link Access
Points (APs), spread across the East and West Towers of the
hotel. The conference rooms were in the West Tower, which
had 38 APs. Each AP was equipped with dual radios, with one
radio tuned to operate on the 5 GHz spectrum (802.11a network)
and the other on 2.4 GHz spectrum (802.11b/g network). Thus,
there were 76 APs in total in the West Tower where we installed
our monitoring setup. We focused our monitoring efforts on a
subset of these APs to capture the client behavior during the
daily sessions. To enable spatial reuse, the APs on the 802.11g
network were configured on three orthogonal channels, 1, 6,
and 11, and the APs on the 802.11a network were configured
on four orthogonal channels, 36, 40, 44, and 48.

Figure 1 shows the AP and sniffer locations in the rooms at
the conference venue. The APs did not support load balancing,



Fig. 1. IETF floor plan with AP and sniffer locations. Only
the APs located in the conference rooms are depicted.

transmission power control or dynamic channel assignment.We
used thevicinity sniffingtechnique to collect data from the MAC
layer [13], [5]. This is a technique in which a set of wireless
devices, known assniffers, are deployed to passively monitor
the packets in the wireless medium. A total of 12 sniffers were
deployed in the conference rooms at various locations, which
were chosen based on the number of users in the rooms. These
locations used during the week are indicated in Figure 1. The
sniffers were placed directly underneath the AP to maximise
the likelihood of capture of all the packets received by and sent
from the APs.

The sniffers were IBM R32 and T40 ThinkPad laptops with
linux 2.6 kernel. Each sniffer was equipped with an Atheros
chipset 802.11a/b/g PCMCIA card. The radios were configured
in “monitor mode” to capture all packets. In this mode, we are
able to capture all MAC layer frames including the control and
management frames. In addition, the prism header information,
which contains send rate, received signal strength, and noise
level was also recorded for each packet. We captured the first
250 bytes of the packet to record header information only.
Packets were captured using thetetherealutility.

Meetings were held in two separate sessions, the day and
the late evening sessions, the latter of which is also calledthe
plenary. We monitored the network during both the day and
plenary sessions using different sniffer configurationsi described
as follows.

Day session: The day sessions were held between 09:00 hrs
and 17:30 hrs from November 6-10, 2006. Each day session was
divided into six to eight parallel tracks, each of which was held
in one of the conference rooms. During the day sessions, we

collected usage statistics in the beginning of the day and ranked
the APs based on the number of users associated with each. We
configured the sniffers to monitor the top 12 ranked APs for
the entire day. Some of the sniffers were thus configured on the
802.11g network, and the rest on 802.11a network, depending
on the usage.

Plenary session: The evening sessions were held on Novem-
ber 9th (Plenary I) and10th (Plenary II) between 17:00 hrs
and 19:30 hrs (on these days, the day sessions ended at 16:00
hrs). During the plenary sessions, the partitions between the
Grande BallroomA and B were removed, so that the entire
room could used. Sniffers were placed in this room at the
locations shown in Figure 1 underneath the eight APs. During
plenary I, we configured eight sniffers on the 802.11a network
(one underneath each AP), and four on the 802.11g network,
placed below the four APs located at the entrance of the Grande
Ballroom. During plenary II, we similarly placed the sniffers;
however, in this case the eight sniffers monitored the APs on
the 802.11g network and four monitored the 802.11a network.

Challenges: While the vicinity sniffing technique facili-
tates capture of data, control, and management frames on the
wireless side of the network, there are multiple challenges,
as indicated in previous work [5], [23]. One of the critical
challenges of this technique is unrecorded frames, and how to
reconstruct missing frames using data from multiple sniffers.
This problem has been addressed in the work by Mahajan
et al. [23]. A challenge in our setup was to determine how
reliably the sniffer detected packets that the AP received.If
the receive sensitivity of the radio in the AP was higher
than the receive sensitivity of the sniffer’s radio, the sniffer
would not record every packet that the AP successfully re-
ceived.

For accuracy of analysis, we need to determine the reliability
of the sniffer in capturing all the packets on the wireless
medium. To this end, we compute thesniffing fidelity, defined
as the ratio of frames received by the AP to frames undetected
by the sniffer. We use the strict frame sequencing defined by
the 802.11 protocol to compute the sniffer reliability. That is,
for every response logged by the sniffer, there should have been
a corresponding request from the client. The sniffer was placed
directly below the AP and so we can safely assume that it should
have received the vast majority responses from the AP.

For every message received from the AP, we need to make
sure that a corresponding message was received from the client.
To do this, we first need to determine which of the request-
response frames can be used for the computation of sniffing
fidelity. We cannot use the RTS-CTS pair since the 802.11g
mechanism uses CTS-to-self packets to silence 02.11b neigh-
bors. Probe request-response messages also cannot be used since
probe requests are broadcast and all APs that receive a request
transmit a reply. Fortunately, the association (ARQ, ARP) and
reassociation (RRQ, RRP) request and response frames arrive
atomically and can be used in our computation. Similarly, the
DATA-ACK arrival atomicity can be leveraged. The drawback
of this technique is that it does not account for missing frames
when both the request and response are unrecorded. However,
since the sniffers were placed directly beneath the APs, the



Fig. 2. Airtime utilization of Channels 1, 6 and 11 over one
second intervals.

probability of missing a response is low and we obtain a close
estimate.

Sniffing fidelity is computed as the ratio of the number of
response frames to the number of request frames recorded by
the sniffer, given by:

Sniffing fidelity =
NARQ + NRRQ + NACK

NARP + NRRP + NDATA

(1)

The average sniffing fidelity of the eight sniffers during
the plenary session varied between 0.9 and 0.96. This implies
sniffers captured at least 90% of the frames and as many as 96%.
While we believe that the results obtained from the analysisof
the trace will not be significantly altered if the missing frames
were also present in the analysis, better techniques are required
to determine accurate sniffer locations during the trace collection
for maximum fidelity. Investigation of such techniques is anarea
left for future work.

4.2 Data Set Analysis

Over 140 gigabytes of uncompressed wireless network traces
were collected during the week. With a goal of analyzing
network behavior under conditions of high load and network
activity, we focus on the 802.11g network during the plenaryII
session. There were three times as many users on the 802.11g
network as there were on the 802.11a network, and hence, the
effects of high network usage were more pronounced.

Previous studies have collected data at a single vantage point
and analyzed the client’s performance in terms of throughout,
rate adaptation and retransmissions. While some initial efforts2

exist to analyze handoff behavior in wireless networks, to the
best of our knowledge this is the first attempt to capture wireless
data from the entire network’s perspective and perform handoff
analysis for a network of this scale.

We perform preliminary analysis on the captured data to com-
pute the network usage statistics. We characterize the network
scale in terms of utilization, number of APs and clients. We then
characterize the performance in terms of loss rates.

Network utilization: Figure 2 shows the airtime utilization
on all three channels of the 802.11g network. We compute
airtime utilization at each second as the sum of the time spent

2. http://www1.cs.columbia.edu/ãndreaf/new/ietf.html

transmitting all data, management, and control frames recorded
by the sniffer, and the total number of delay components, such
as the Distributed Inter-Frame Spacing (DIFS) and Short Inter-
Frame Spacing (SIFS) intervals. The APs supported both long
and short preambles. We have used the transmission time for
the long preamble, namely 192µs, in our computation. Each
point on the graph is an average over a 20 second interval. We
observe that the utilization level increases at around 17:00 hrs,
when the plenary begins. The network continues to be heavily
utilized throughout the plenary.

Number of access points: Since the network at the IETF was
densely deployed, we expect multiple APs on each channel to
be within the range of each of the sniffers. In Figure 3(a), the
x-axis shows the number of APs within the sniffers’ range, and
the y-axis shows the percentage of time the sniffers detected
that number of APs. The figure shows that the sniffers had
between one and eleven APs in range. We observe that about
90% of the time, between four and eight APs on the same
channel were within range of the sniffers. The beacon frames
that are periodically broadcast by the APs are used to compute
the number of APs in range for that interval. The cumulative
percentage is computed for all the sniffers over the entire length
of the plenary.

Number of users: Figure 3(b) shows the instantaneous
number of clients detected per second, summed over all chan-
nels, throughout the plenary session. The vertical lines mark the
duration of the plenary. A client who transmitted at least one
data frame during a one second interval is said to be present in
that interval. For visual clarity, the average value for 20 seconds
is represented in the figure. A maximum of 300 users were
detected to be simultaneously present on the network, and the
number of users continues to be high, over 150, throughout the
session.

Loss: We compute loss rate as the number of MAC layer
frames marked as retransmissions. Figure 3(c) shows the instan-
taneous packet loss rate in the network for every one second
interval during the plenary. The vertical lines mark the duration
of the plenary session. Again, the points in the figure are an
average of 20 seconds. The packet loss rate is computed as the
ratio of the number of retransmitted frames to the total number
of data frames logged by the sniffer. Retransmitted frames are
data frames with theretry bit set. We observe that the loss
rate increases to over 20% as the plenary session begins, and
continues to be high throughout the session, with a maximum
loss of about 35%. Clearly, the network suffered high loss rates
throughout the session.

The graphs indicate that, during the plenary session, the
network was heavily utilized and had a dense deployment of
APs. At the same time, the network suffered from a high loss
rate. In comparison with previous studies of large scale wireless
networks, our traces are extensive in that they cover the entire
set of APs throughout the session. The high utilization and loss
rates motivate us to evaluate the wireless protocol behavior to
investigate the cause for these high loss rates.

5 TRAFFIC ANALYSIS

The 802.11 DCF protocol uses Carrier Sense Medium Access
with Collision Avoidance (CSMA/CA) to manage and reduce
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the sniffers.
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(b) Total number of clients on all
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(c) Packet loss rate.

Fig. 3. Usage statistics of the IETF wireless network during Plenary II.
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(a) Per-client throughput.
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(b) Aggregate data and control throughput.

Fig. 4. Per-client and aggregate throughput.

contention. According to the algorithm, a node that wants to
transmit a frame is required to perform carrier sensing to check
whether the medium is busy. If the medium is not busy, the
node transmits the packet. If the channel is busy, then the node
backs off for a specific interval known as thebackoff interval.
For every slot time that the channel is not busy, the BO is
decremented. The node transmits the packet when the backoff
timer reaches zero. If this transmission results in a collision,
maximum length of backoff interval doubles.

This algorithm requires that a node must contend for every
packet that it needs to transmit. In a network where there are
a large number of nodes, several nodes will be within each
other’s carrier sense range. In a highly utilized network, these
nodes will have a large number of frames that they need to
send. When nodes within carrier sense range repeatedly contend
for the medium, the nodes spend a significant amount of time
in backoff, instead of packet transmission. Consequently,the
medium is not utilized efficiently even though the contention is
high.

In a large network such as the IETF, we expect the aforemen-
tioned problem to be prevalent. To avoid unnecessary backoff
and utilize the medium efficiently, it becomes critical that
we avoid transmitting any unwanted frames on the wireless
medium. Our goal is to analyze the traffic to identifyunwanted
traffic on the wireless side, recognize the protocol components
that generate this traffic and suggest ways to mitigate the
unwanted traffic. In doing this, we reduce the overhead of
unnecessary medium contentions and backoff. The transmission
opportunities available to nodes to transmit useful data frames
is thus significantly increased. In the context of our work,

Fig. 5. Breakdown of management traffic as a
percentage of total traffic.

unwanted traffic is defined as traffic that is unnecessarily sent
on the medium, due to a deficiency in the protocol or its
implementation. In the remainder of this section, we analyze
the amount of overhead and identify protocol components that
generate unnecessary traffic.

We begin with an analysis of user and network throughput.
Per-user throughput and aggregate network throughput are com-
puted based on the instantaneous number of users recorded in
our data sets. To compute these metrics for a particular one-
second interval, we consider all users who contributed at least
one data frame during that interval. Figure 4(a) shows the per-
user throughput versus the number of APs within range during
the same one second interval. The initial increase in throughput
as the number of APs increased can be understood as the time
when clients obtained benefits of multiple APs in the vicinity,
in terms of selecting the AP with the best signal strength. As



(a) Frame overhead per client. (b) Frame overhead per AP.

Fig. 6. Frame overhead.

the number of APs in the vicinity increases beyond four, the
throughout begins to deteriorate. This decrease is due to the
increased interference that results from dense AP deployment.
The throughput interestingly peaks when there are four APs in
the vicinity, which can be understood as follows. When there
are three APs in range of each other, they will be assigned
to orthogonal frequencies. Contention arises as more APs are
within range, resulting in more than one AP operating on the
same channel.

Figure 4(b) shows the aggregate network control and data
throughput computed for every one second interval, plot-
ted against the number of APs within range during the
same one second interval. Again, when the number of
APs is greater than four, we observe that the aggregate
throughput decreased. However, the rate at which the data
throughput decreased is much greater than that of the con-
trol throughput. Here, the term control throughput is used
to refer to throughput of all non-data frames, i.e., con-
trol frames and management frames. The decrease in ag-
gregate throughput is the consequence of increased interfer-
ence and contention. The higher percentage of control traf-
fic is a result of an increase in the number of overhead
frames caused by the presence of multiple APs in the vicin-
ity.

To understand the cause of this overhead, we first need
to categorize the traffic based on the different frame types
and subtypes. An overview of the management frame types is
given in Section 3. In this paper, we focus on the unwanted
management and data traffic subtypes, and not the control traffic.
The control frame subtypes found in the traces are Request-
To-Send (RTS), Clear-To-Send (CTS), and Acknowledgment
(ACK). ACKs are necessary to acknowledge the successful
reception of data packets. Only about 15% of the users used
the RTS-CTS mechanism, and the percentage contribution of
these frames to the overhead was not significant. Hence, we
focus our analysis on the management and data frames.

A high percentage of the total frames, nearly 40%, were
management frames. This high percentage of management traffic
has also been reported in previous studies [4]. Figure 5 shows
the percentages of each management frame subtype as recorded
by the sniffers, averaged over all three channels. Thex-axis in
the graph represents each of the management frame subtypes

explained in Table 1 and they-axis shows the percentage of
frames of each subtype.

To understand the effect of this overhead on the clients
and APs, we calculate a metric calledframe overhead. Frame
overhead is computed as the ratio of number of management
frames to the number of data frames transmitted in every one
second interval. For a client, the overhead consists of probe,
association and reassociation requests. For an AP, the overhead
frames are the corresponding response frames. This metric is
useful as it gives a sense of how many overhead frames a station
transmits before obtaining the opportunity to transmit a data
frame. Each time a node transmits an overhead frame, it implies
a missed transmission opportunity for a data frame.

The frame overhead for each client is shown in Figure 6(a)
and for each AP is shown in Figure 6(b). Each value on
the x-axis represents a single station (client or AP). The
y-axis shows frame overhead for each of the three frame
types. The clients and APs are arranged in ascending order
of frame overhead for the purpose of clarity. As we can see,
the frame overhead for a majority of the clients is greater than
one. This implies that a majority of stations must transmit
multiple overhead frames before transmitting a single data
frame.

In the following sections, we investigate the causes of such
high overhead. We show that this overhead is an artifact of a
network that is dense and heavily utilized, and much of this
overhead is unwanted and degrades the network performance.
We then explore ways in which this overhead can be reduced
and study the gains of reducing the unwanted traffic. In our
traces, we identified two major contributors to unwanted traffic
frames. First is a data frame subtype, the null data frame
which we discuss in Section 5.1. In Section 5.2, we analyze
probes, which are another type of unwanted traffic. We in-
vestigate the causes for the high volume of probe traffic and
the effects of dense AP deployments on the amount of probe
overhead.

5.1 Keepalive Traffic

We analyze the effect of packets transmitted by client cards
to maintain connectivity with the access point. We call these
packetskeepalive traffic. In our traces, we observed a large
number of null data frames transmitted by the clients to the



Fig. 7. CDF of interarrival times of the keepalive packets.

Bytes Airtime Frames
8% 9% 12%

TABLE 2
Volume of keepalive traffic as a percentage of the entire

trace.

access point that were then ACKed by the AP. A null frame is a
data frame subtype with zero bytes of data. Further analysisof
the traces and open source client implementations (such as Intel)
showed that this was part of the AP book-keeping mechanism.

APs maintain an entry for each client in order to store the
client’s connectivity information. This overhead increases as
the number of clients grows. In an effort to minimize this
book-keeping overhead, the APs maintain state informationonly
for those clients that are actively sending data packets, and
disassociate those clients which have not sent any. The amount
of time an AP waits before disassociating an inactive client
is implementation dependent. In the absence of data packets,
a client transmits null packets, which are essentially keepalive
packets, to avoid disconnection by the AP.

Figure 7 is a cumulative distribution of the frequency at which
clients transmitted keepalive packets. For each client, the interval
between two successive null data packets is calculated and the
cumulative distribution of all the inter-packet intervalsis plotted.
The plot shows the CDF of packet intervals for all the clients
for the duration of the plenary. Nearly 50% of the keepalive
packets were sent within an interval of 100 ms and 90% of the
packets are sent within 1 second. This high rate of transmission
results in significant overhead. The impact of this mechanism on
the traffic is summarized in Table 2. We examine three different
metrics: number of bytes, airtime and number of frames. Each
value in the table is expressed as a fraction of the entire trace
and averaged over all the channels. As we can see from the
table, the keepalive packets pose a considerable overhead,and
intelligent techniques that reduce this overhead in a network that
is heavily utilized are needed.

5.2 Probe Traffic

A client broadcasts probe requests when it needs to obtain
information on which APs are in range. Any AP that receives
this request sends a probe response containing information
necessary for association, such as capability informationand

Fig. 8. Comparison of probe traffic with utilization.

supported data rates. Probe requests are sent when a client
disconnects or roams from the AP with which it is associated.
A client also probes the medium periodically to check which
APs are in the vicinity, and whether it is still associated with
the AP with the strongest signal.

This aggressive probing is beneficial when clients are mobile.
When a client moves and loses connectivity with an AP, the
process of scanning and performing a handoff to another AP
can take hundreds of milliseconds. This delay is large enough
to deteriorate application performance, especially delaysensitive
applications such as voice. Instead of being reactive to packet
loss, clients are proactive in probing the medium and collecting
neighbor information.

While aggressive probing of the medium facilitates faster
handoffs for mobile clients, this behavior in a static, congested
network imposes unnecessary overhead and leads to inefficient
medium utilization. Figure 8 shows the number of probe requests
and responses logged by the sniffers per second, averaged over a
period of 20 seconds. On average, there were 22 probe requests
every second, and at times, as many as 80 probes per second.
To understand the high occurrence of probe frames, we look at
how frequently the clients probed the medium.

From Figure 8, we also observe that there are a large number
of probe responses every second, even more than the number
of probe requests. Our reasoning is as follows: since probe
requests are broadcast packets, all APs within range of the client
hear the request and send unicast responses to the client. In
the IETF network, there were multiple APs deployed on each
channel, resulting in multiple responses per request. As wesaw
in Figure 3(a), there were at least four access points detected
85% of the time. This implies that each probe request is likely to
elicit at least four responses 85% of the time. This is significant
extra overhead in a network that is already highly utilized.

Figure 9 shows the cumulative distribution of the frequency
with which clients probed the medium. Thex-axis represents the
intervals between successive probe requests by any client and the
y-axis represents the cumulative percentage of probes at each of
the intervals. The graph plots the cumulative distributionof the
inter-probe intervals of all the probe requests for each client in
the plenary that sent at least one data frame. Nearly 60% of all
probe requests occur in intervals smaller than 30 ms, and close
to 80% in intervals smaller than 2 seconds. This indicates that a
majority of the clients probe the medium frequently, contributing
to the overhead. The clients whose probe intervals are very high,



Fig. 9. CDF of the interval between successive probe
requests.

Fig. 10. (a) Scatter plot showing the relationship between
the number of clients and probe requests. The correlation
coefficient is 0.73. (b) Scatter plot
showing the relationship between loss rate and probe re-
quests. The correlation coefficient is 0.65.

on the order of 100 seconds, are the clients for whom we did
not observe active sessions in the traces. This may indicatethe
radios were in sleep mode and he laptop was not in use.

To understand the factors that affect probe traffic, we study
the correlation between the number of probe requests and
the number of users and loss rate. As the number of clients
increases, we expect a proportional increase in the number
of probe requests. Also, when the congestion in the medium
increases, the number of retransmissions increases. We expect
this increase to result in the loss of some of the probe request and
response frames. When response frames are lost due to collision,
the client will retransmit a probe request, thereby aggravating
congestion. Hence we expect a correlation between the loss rate
and the number of probe requests. To verify these claims, we
plot the number of probe requests per second against the number
of clients and loss rate in F igures 10(a) and 10(b), respectively.
Figure 10(a) indicates that, as the number of users increases, the
number of probe requests increases. In Figure 10(b), the number
of probe requests generally increases with an increase in loss
rate.

5.3 Discussion

Management frames, together with keepalive traffic, comprise
nearly half the total frames transmitted during our collection
period. This extreme overhead is detrimental to network perfor-
mance. With nodes frequently contending for the medium and

then backing off, the medium is utilized inefficiently. Witha
large number of transmitted packets, the probability of packet
collision and retransmission is significant. The high frequency of
medium probing by the nodes is wasteful. We show in Section 6
that users were predominantly static in the plenary sessionand
did not need to aggressively search for new APs. The same
argument holds for keepalive messages. While this mechanism
reduces storage overhead on the AP by aggressively removing
the disconnected clients, it results in high traffic overhead. This
behavior is particularly undesirable in static networks where
there is a high probability that a user will reconnect to the same
AP. In such a case, having the AP keep a client record active
may be more beneficial than aggressively removing it.

6 HANDOFF ANALYSIS

In Section 5, we studied the breakdown of network traffic
and quantitatively analyzed the amount of management and
keepalive traffic. Both these frame types are necessary to
maintain the client-AP associations. Even when clients arenot
moving, neighbor discovery is performed frequently to check
whether an AP with a higher signal strength is available, thus
attempting to improve performance. When a client wishes to
associate with a different AP, a handoff process is initiated. An
overview of the handoff procedure was provided in Section 3.
Handoff trigger is the first stage of handoff wherein a client
identifies the need to look for another AP. The implementation
of this mechanism is left to vendors, however, it is usually a
reaction to one or more of the following: 1) consecutive missed
beacons3; 2) unacknowledged packets [17]; and 3) beacon frame
loss or quality degradation [20]. As a result of frequent probing
and implementations that use packet loss information to trigger
handoffs, we expect a high rate of handoffs in a congested
network. In this section, we analyze the duration and frequency
of these associations and the handoff behavior of clients.

Channel 1 Channel 6 Channel 11

614 586 627

TABLE 3
Number of handoffs during the plenary session.

6.1 Trace Analysis

To explore the handoff behavior observed in our traces, we
investigate the number and frequency of handoffs and the
nature of handoffs between different channels. Most importantly,
we investigate whether the handoff resulted in a performance
improvement for clients.

The number of handoffs on each channel observed during
the plenary is summarized in Table 3. We observe a total of
nearly 1800 handoffs during the three hours of the plenary,
which is unexpected since we visually observed client mobility
to be minimal during the session. To better understand the
client handoff behavior and validate our anecdotal observation
of low client mobility, we compute the length and frequency of

3. http://ipw2200.sourceforge.net



client-AP associations. We define two metrics for this compu-
tation: prevalenceand persistence. Prevalence and persistence
of Internet routes were previously studied by Paxson [24]. We
define these terms in the context of client-AP associations,and
compute these metric values for the IETF traces.

6.2 Prevalence

Adapting the notion of prevalence as defined by Paxson [24],
we define prevalence of clients as follows: Given that we
observed a clientc associated with an APA, what is the
probability of observingc associated withA in the future?
Prevalence has specific implications on client mobility. Ifa client
is predominantly static, the prevalence of a client-AP association
pair is high, we call this AP thedominantAP. On the other hand,
evenly distributed prevalence values indicate that there was no
single dominant AP, and that the client was mobile. In a well
functioning network characterized by clients with low mobility,
we expect the majority of the client-AP associations to have
high prevalence values indicating that clients did not bounce
back and forth between APs.

We compute prevalence values at a high granularity of one
second and a coarse granularity of one minute. We divide the
trace inton intervals. Letns be the total number of one second
intervals in the trace. At each one second interval, we check
whether a client has sent at least one data packet to the AP. Ifit
has, then it is still connected to the AP, else it has either roamed
or become inactive. We consider the client to have reconnected
to the AP when we see a data packet from that client again.
Let ks be the total number of one second intervals in which
the client was active. The prevalence of the client on the AP is
given by

πs = ks/ns (2)

The prevalence values at one second granularity are shown in
Figure 11. The prevalence values at this granularity are evenly
distributed, which indicates that at a high granularity, not all
clients were highly prevalent on the dominant AP. About 40%
of the clients had only a 50% chance of being associated with
its dominant AP.

Prevalence at granularity of one minute is calculated similarly.
If nm is the total number of one minute intervals in the traces,
andkm is the number of intervals in which a client was active,
the prevalence is given by

πm = km/nm (3)

From Figure 11, we see that the majority of clients are more
prevalent on the dominant AP on a one minute granularity.
Only about 30% of clients had a prevalence of 80% or less
on the dominant AP. The remaining 70% of the clients were
prevalent on the dominant AP over 80% of the time. These
results indicate that clients frequently associated with the same
AP, implying that mobility in the network was low. Even though
multiple APs on the same channel were within the range of a
client, we observe that a client tends to be prevalent on one AP,
the dominant AP. As described in Section 3, most clients use
signal strength to select an AP for association. Consequently,
the dominant AP is most likely the AP closest to the client. The

Fig. 11. Client prevalence on an AP, given as the cu-
mulative distribution of the probability of a client being
associated with an AP.

lower prevalence at a higher granularity of time implies oneof
the two things: i) clients were sending data frames infrequently;
or ii) clients were bouncing back and forth between APs within
short intervals. Given the rate at which the keepalive packets
were transmitted, as shown in Figure 7, and the per second client
throughput, as shown in Figure 4(a), we believe that frequent
switching of clients between APs contributed significantlyto the
lower prevalence rates over one second intervals.

6.3 Persistence

We define the persistence of a client as follows: Given that
a client is associated with a particular AP, how long before
the client is likely to have changed its association to another
AP? Thus, persistence is the length of time a client remains
associated with an AP. A low persistence value indicates that
the clients did not remain connected to an AP for a long time.
In a well-functioning network characterized by clients with low
mobility, we expect clients to have high persistence values. That
is, clients stay connected to an AP for long periods while they
are static, and only infrequently change APs during movement.

We calculate the persistence of clients connected to their
dominant AP. The dominant AP for a client is the AP on
which the client has high prevalence. An association lengthis
calculated as the time elapsed between the first and last data
frame observed from the client, including null data frames.
The persistence is computed for a one second time interval;
if no data frame has been observed for up to one second, we
assume the session has ended. The one second interval for
this computation is based on the observed rate at which null
packets are transmitted by the clients to keep their sessions alive.
From figure 7, we learned that about 98% of the time, a null
packet is sent within one second. Furthermore, if we observe
a data frame from a client at seconds1 and do not observe
a frame in the subsequent seconds2, we make a “best guess”
that the disassociation occurred halfway between these twotime
intervals.

Figure 12 shows the cumulative distribution of persistence
values for the users present during the plenary session. The
figure captures values for all client-AP pairs observed in the
traces. Thex-axis represents the length of associations in
minutes and they-axis represents the cumulative percentage of
associations. About 40% of the associations were under two



Fig. 12. Client persistence on an AP, given as the
cumulative distribution of client-AP association
duration.

Fig. 13. Comparison of utilization and number of handoffs
across all channels.

minutes and 90% of associations were under seven minutes.
This indicates that clients remained connected to APs for fairly
short periods of time.

In a network with dense AP deployment and a large number
of users connected to the network simultaneously, the number
of handoffs is high in spite of low mobility. The reason for this
behavior lies in the handoff mechanisms. Handoff triggering
mechanisms rely on packet loss information to detect when
a client has moved away from its AP. This loss can consist
of either consecutive beacon framesi losses or unacknowledged
data packets. In our traces, we found that the number of beacons
received by a client, calledlink reliability, influences the number
of handoffs, as shown in Figure 13. Link reliability is computed
as the average percentage of beacons received by the sniffer
from each AP within range. Sniffers are physically close to the
APs and have a higher probability of beacon reception than
the clients. Hence, this graph provides an upper bound on the
number of beacons that a client is likely to have received.
The graph is a time series plot of the percentage of beacons
the sniffer received from all APs in one second, and the
corresponding number of handoffs that occurred. The beacons
were sent at 100ms intervals, implying that the sniffer should
receive 10 such beacons per second from each AP in its range.
The graph shows a sharp increase in the number of handoffs
when the beacon reception rate decreased.

Using link reliability as a handoff trigger is incorrect and
problematic in a congested environment. At high utilization
levels, the beacon reception rate decreases for two reasons.

Fig. 14. Scatter plot of beacon reception rate vs. utilization.
The correlation coefficient is -0.65.

First, the packet loss rate increases, as illustrated in Figure 3(c),
resulting in missed beacon packets. Second, certain AP imple-
mentations are known to not queue beacon packets, and will
broadcast beacons at the specified beacon interval only if the
send queue is empty4. Figure 14 illustrates this effect. When
the medium is utilized over 50%, the sniffer received beacons
only slightly more than 50% of the time.

Channel 1 Channel 6 Channel 11
Channel 1 33% 7% 2%
Channel 6 2% 24% 6%
Channel 11 4% 3 % 19%

TABLE 4
Percentage of handoffs between different channels for
each channel pair. The row value indicates the channel
before handoff. The column value indicates the channel

after handoff.

The use of packet loss information as a handoff trigger has
adverse effects in a congested network. Missed beacons initiate
a client to commence roaming, wherein a client actively probes
the medium and waits for responses from APs. This behavior not
only results in unwanted probe traffic in the wireless medium,
but also results in unwanted handoffs. We analyzed the nature
of handoffs between channels and the results are summarized
in Table 4.

As indicated by table 4, 76% of the handoffs occur between
APs on the same channel (found by summing along the diago-
nal). About 58% of the total handoffs were to the same AP from
which the client disconnected. This behavior can be explained
as follows: a handoff is triggered due to packet loss, as we
have seen earlier. On a trigger, the client scans the medium
and obtains information on all the available APs. Currently
implemented AP selection mechanisms typically select the AP
from which the client receives the strongest signal, without any
knowledge of the load on the AP or on the channel. For clients
that are predominantly stationary, the AP with the strongest
signal strength will be, with a very high probability, the AP
from which the client disconnected.

Reassociation with the same AP is wasteful; not only does

4. http://hostap.epitest.fi
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Fig. 15. Percentage change in throughout after handoff
over a period of 30s. The x-axis represents each handoff
event ordered by throughput improvement.

it result in MAC overhead, but it also causes application
performance deterioration. Handoffs to APs on the same channel
can be beneficial only if the new AP is less loaded than the AP to
which the client was previously connected. However, connecting
to APs with lower signal strength is likely to result in lowered
data rates. Further, if the network around the client is congested,
switching to a different AP on the same channel is not beneficial
since the client continues to see a similar level of congestion.

Switching to an AP on a different channel can be beneficial if
the new channel is less congested and can offer better throughput
to the clients. Since the three channels were utilized uniformly
during the plenary and loss rates were comparable, as shown in
Figure 3, we do not expect users to have obtained significant
gains from handoffs.

To determine whether the handoffs were beneficial, we com-
pute the percentage change in throughput immediately before
and after a handoff for each handoff between two different
APs. To calculate the percentage throughput improvement of
the client, we consider the throughput obtained by the client
30 seconds before and after the handoff and plot the difference.
These values are plotted in Figure 15, where the handoffs events
are ordered in the ascending order of the throughput improve-
ment. Thex-axis represents individual handoff events and the
y-axis represents the percentage improvement in throughput
as a result of the handoff. The graph indicates that about
50% of the handoffs had a negative impact on the throughput.
While 50% handoffs resulted in an increase in throughput,
20% of these handoffs resulted in less than a 10% increase
in throughput. These results indicate that a significant portion
of the handoffs were not beneficial, and may even have been
detrimental. A reduction in unbeneficial handoffs will reduce the
amount of management traffic, leading to greater transmission
opportunities for nodes with data packets and an increase in
efficient medium utilization.

6.4 Vendor Handoff Analysis

Much of the handoff behavior discussed in the earlier sections
depends on the way the handoff mechanism is implemented by
the wireless card vendor. The IEEE 802.11 specification does

Fig. 16. Distribution of cards per vendor.

Fig. 17. Percentage of handoffs per vendor.

not specify the exact implementation of handoff mechanisms,
leaving it to the vendor to implement efficient algorithms for
handoff triggers and AP selection. In this section, we investigate
the behavior of different cards to analyze whether the handoff
behavior observed is common among the different vendors or
simply a manifestation of bugs in a single vendor’s implemen-
tation.

Over 600 unique cards were present in the plenary session.
The breakdown of the cards based on the vendors is shown
in Figure 16. Figure 17 shows a breakdown of the percentage
of handoffs per vendor. Cards from different vendors exhibited
similar handoff behavior, with the exception of Apple cards.
Apple cards experienced a low percentage of handoffs duringthe
entire plenary. Figure 18 shows the prevalence of clients onthe
dominant AP, grouped by vendor. The figure shows that different
cards are relatively consistent in reassociation with the same AP
regardless of vendor; nearly 40% of the cards reconnect to the
same AP within five minutes.

Figure 19 shows the client persistence on the dominant AP.
Consistent with earlier results, we see that up to 25% of user
sessions were under a second and nearly half of these were under
one minute. This behavior is consistent across the different card
vendors, with the exception of Apple. This result shows that,
across vendors, there is a need for better handoff triggering and
AP selection mechanisms. Since the Apple drivers are not open



Fig. 18. Client prevalence. Black indicates the percentage
of clients that reconnect to the same AP within one minute.
Grey indicates percentage of clients that reconnect within
five minutes.

Fig. 19. Session length. Black indicates percentage of
clients whose session lengths were under 1s and
grey indicates the percentage of clients whose session
lengths were under 1m.

source, we are unable to investigate why Apple cards perform
better than the other vendors.

7 CONCLUSION

The ease of deployment and low cost of infrastructure have led
to the rapid deployment of WLANs to provide network access to
users. Analysis of real world deployments are critical to identify
deficiencies in the 802.11 protocol and its implementations. To
this effect, we collected data from the67th Internet Engineering
Task Force (IETF) meeting held in November 2006 in San
Diego CA. Through the analysis of this data, we have iden-
tified the causes for high overhead in the transmission of data
frames. In particular, we have analyzed the unwanted link layer
traffic that stems from mechanisms that initiate, maintain,and
change client-to-AP associations. We further show that clients
have short association times with the APs. This result is a
consequence of the current mechanisms that trigger a handoff
under conditions of high medium utilization and packet lossrate,
even in the absence of client mobility. We analyze the trafficto
understand when handoffs occur and whether the handoffs were
beneficial or should have been avoided.

Observations made in this paper suggest that there is a need
to design algorithms that are adaptive to network conditions
and usage. In particular, the frequency of keepalive messages
should be lowered when the clients are stationary and when the
network congestion levels are high. Similarly, the periodic probe

requests must be reduced in stationary, congested networks. In
a network that is used heavily, a client may be able to leverage
probe responses transmitted to its neighbors. Thus, a mechanism
in which a node passively monitors the probe responses in its
vicinity, and sends a request only when it does not detect any
neighbor responses, will help in reducing the probe traffic.

Finally, handoff mechanisms should be adaptive to conges-
tion losses. Use of packet loss information to trigger hand-
offs creates in a high rate of handoffs, even in the ab-
sence of mobility. In the IETF network, a significant fraction
of these handoffs were to the same AP, and thus unneces-
sary. Further, many of the handoffs that occurred to other
APs impacted the clients negatively. Schemes that use signal
strength trends to detect disconnection, and schemes that in-
corporate network information such as load or loss rates, are
needed.
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