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ABSTRACT

With broadband penetration rates of less than 10% per
capita, Tribal areas in the U.S. represent some of the most
underserved communities in terms of Internet access [4]. Al-
though numerous sources have identified this digital divide,
there have been no empirical measurements of the perfor-
mance and usage of services that do exist in these areas. In
this paper, we present the characterization of the Tribal Dig-
ital Village (TDV) network, a multi-hop wireless network
currently connecting 13 reservations in San Diego county.
This work represents the first traffic analysis of broadband
usage in Tribal lands. After identifying some of the unique
purposes of broadband connectivity in indigenous commu-
nities, such as language revitalization and cultural develop-
ment, we focus on the performance of popular applications
that enable such activities, including Youtube and Insta-
gram. Though only a fraction of the bandwidth capacity is
actually used, 30% of Youtube uploads and 24% of Insta-
gram uploads fail due to packet loss on the relay and access
links that connect the reservations to the TDV backbone.
Although failure rates are prohibitive to the contribution of
locally generated media (particularly videos), our analysis of
Instagram media interactions and engagement in the TDV
network reveals a high locality of interest. Residents engage
with locally created media 8.2x more than media created
by outside sources. Furthermore, locally created media cir-
culates through the network two days longer than non-local
media. The results of our analysis point to new directions
for increasing content availability on reservations.

1. INTRODUCTION

Even as global broadband coverage continues to increase,
Tribal communities remain largely unconnected to broad-
band services, with less than 10% of the population residing
on Tribal lands having access to broadband—a stark contrast
to the rest of the United States where the average broadband
penetration rate is 70% [4]. The lack of broadband access for
these communities is caused by a convergence of challenges,
including geographic obstacles, funding, and complex net-
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work policy standards. Tribal communities represent some
of the final frontiers of the digital divide in the U.S. and
a disparity in the accessibility of critical opportunities, in-
cluding education, health, and financial services. Even after
issues of connectivity are resolved, content-related issues be-
come apparent: web content does not reflect Tribal interests;
indigenous languages are not represented in web media and
are at risk of extinction; and indigenous people play a lim-
ited role in how they are represented in media in general. To
this end, social media has been cited as a key factor in estab-
lishing digital sovereignty, identity, and cultural resilience in
Tribal communities [25].

Despite the U.S. government’s concern with making broad-
band more accessible to Tribal communities and anecdotal
evidence supporting the importance of online services in pre-
serving Tribal identity and culture, there have been no quan-
titative studies exploring how Tribal communities utilize ex-
isting broadband connectivity. Likewise, little has been done
to understand Tribal use of social media from a networking
perspective, even though this insight could motivate innova-
tive technical solutions for bringing access to more people.
This research represents some of the first work in character-
izing web usage in Tribal communities.

Using network traffic collected from the Tribal Digital Vil-
lage (TDV) network in rural San Diego County, we gain
insight into web usage in Tribal America [10]. Our data
represents Internet usage over a period of two months, from
June 23 to August 20, 2014. The TDV network provides 13
previously unconnected Indian reservations® with affordable
residential broadband services over a long-distance multi-
hop wireless backbone that terminates in a high speed fiber
connection to the Internet. Surprisingly, our work reveals
that Instagram, not Facebook or Google, is the most re-
quested application in the network, generating over 2 million
requests in two months. Additionally, it is one of the top
five most bandwidth-consuming applications in the network.
Unlike other popular social networking platforms, such as
Facebook or Twitter, Instagram focuses exclusively on the
processes of creating, sharing, and interacting with media,
which makes it especially relevant for understanding how so-
cial media functions within a Tribal context. Likewise, In-
stagram has been cited as one of the top social networking
platforms of 2014 with one of the most diverse and engaged
user bases [19]. While it has been studied in the context of
data visualization [21] and participatory crowd-sensing [27],

'An area of land reserved for a Tribe or Tribes under treaty or other
agreement with the United States for use as permanent tribal home-
lands. http://www.bia.gov/FAQs/



to the best of our knowledge, there has been no study of
its usage and performance within the context of a particu-
lar community. Thus, our work in Section 5 is the first to
use Instagram as a lens through which to understand media
prevalence and locality in a community context.

This paper leverages the Instagram social network along
with traffic traces from a wireless network to better under-
stand web usage and social media behavior in the unique
context of Tribal America. We add the caveat that “Tribes”
refers to a set of indigenous people who represent a wide
variety of languages, cultures, and perspectives across the
U.S.; our study provides measurements for only a small frac-
tion of this population. However, with 13 individual Tribes
represented in our study, our findings present a unique op-
portunity to get a diverse perspective on Tribal traffic. This
work presents the following contributions:

e One of the first characterizations of web traffic in a
Tribal community

e An evaluation of media performance in a network
topology commonly used to bring initial access to
developing regions

e An analysis of Instagram media popularity and locality
within the context of the TDV network as a whole and
within six individual reservations

Our analysis shows that while the usage patterns observed
in the TDV network are consistent with reported usage pat-
terns in other Tribal communities and content delivered over
the TDV network is very socially and locally oriented, the
technologies used to present, store, and share this content
are not amenable for use in vastly disconnected environ-
ments.

We begin by reviewing related work in Section 2 and move
to describing the TDV network and the uniqueness of the
Tribal networking context in Section 3. We proceed to dis-
cuss general usage and media performance in Section 4. In
Section 5, we explore media popularity and locality using In-
stagram network traces. We discuss our findings and future
work in Section 6 and end with our concluding remarks.

2. RELATED WORK

There are several important measurement studies focused
on initial analysis of usage and performance in developing
contexts [22][14][18]. When it comes to measuring wireless
networks in developing contexts, our work is most similar to
[18] and [22]. While we look at the performance of media ap-
plications and approach network analysis through a cultural
lens, our work is distinct in three major ways. First, the
TDV network is unlike the networks studied in the aforemen-
tioned work in that it is not a highly latent or bandwidth-
limited network. Rather, this work provides a first look at
web traffic generated by a disenfranchised population that
is unique in terms of political status, age demographics, and
geographic context in a developed and well-connected na-
tion. Second, our work focuses on the relationship between
physical proximity and social closeness in an online social
network, including the strength of social connections as well
as the popularity of social media. Our focus on social media
was informed by interview studies of First Nations (Tribal)
broadband usage by Molyneaux et al.[25]. While Molyneaux
et al. also focus on characterizing broadband use in Tribal

communities, the study involves no analysis of measured net-
work usage or performance and is based exclusively on sur-
vey responses. Our work is complementary to this approach
and we find that our analysis supports many of the observa-
tions made by Molyneaux et al., including the significance
of social media, the popularity of audio and video media as
well as online gaming.

A significant body of work explores the diffusion of in-
formation in social networks, including characterization and
modeling of diffusion patterns through various online social
networks, including Twitter, Facebook, and Flickr [23] [12] [13].
Most relevant to our analysis is work focusing on informa-
tion diffusion in social networks over time and space. Cha
et al. study the role media popularity and the strength of
social links play in the rate that media diffuses the Flickr
social network [13]. In contrast, we study media diffusion
and social bonds with respect to geographic locality. Also
relevant to our work is research exploring the connection be-
tween location and social connections [16]. Cho et al. con-
nect information from an underlying physical data network
to those in an online social network. This work focuses on
understanding the social motivation behind human mobility
while our work seeks insight into the impact social bonds
in geographic communities have on media in their online
counterparts.

3. BACKGROUND

Most of the challenges for broadband accessibility on reser-
vations stem from a centuries-long history of conflict be-
tween the U.S. government and indigenous Americans. This
history includes removal of indigenous people from their
ancestral homelands and forced assimilation and decultur-
ization in Western boarding schools, resulting in a genera-
tion disenfranchised from their indigenous cultures and lan-
guages. However, Tribes have been resilient and view broad-
band technologies as a way to communicate, share, and de-
velop indigenous identity as never before. Rejuvenation
of disappearing languages and culture in addition to the
growth and development of contemporary cultural identities
are major motivators for broadband access in Tribal commu-
nities [25]. Demonstrating the breadth of the issue, Figure 1
highlights U.S. counties containing Tribal areas with abso-
lutely no access to fixed or mobile broadband (i.e. 3G, 4G,
LTE). As Tribes in the U.S. seek to cultivate broadband in-
frastructure within their communities, they must contend
with national telecommunications policy, coordinate with
neighboring deployment strategies and regulatory bodies,
and find sustainable revenue sources. Issues of resource al-
location and use are rendered even more complex by their
status as sovereign nations. For instance, Tribes cannot use
Tribal land as collateral on loans to subsidize the build-out
of communications infrastructure as sovereign land cannot
be repossessed. Additionally, attitudes regarding the own-
ership and control of digital content as well as the impact
of Internet content on culture and community have caused
some Tribal leaders to hesitate in the deployment of broad-
band infrastructure in their communities [17].

In spite of the challenges, several Tribes have taken action
to increase broadband connectivity in their communities.
Our research focuses on a high-speed wireless network es-
tablished by the Southern California Tribal Chairmen’s As-
sociation (SCTCA). As recently as 2001, none of the Tribal
land represented by the SCTCA had access to broadband



Figure 1: Counties shaded in gray contain one or more cen-
sus blocks that do not have 3G or better mobile broadband
coverage®.

services. As a solution, the SCTCA launched the Tribal Dig-
ital Village (TDV) network. The ultimate goal of the project
is to provide affordable Internet access to the over 3,000 dis-
connected homes located on Tribal land. Our study of the
TDV network provides insight into how initial connectivity
is being used and how future technologies and information
services might be designed to best serve these emerging net-
works.

3.1 Description of the network

Since its inception thirteen years ago, the TDV network
has provided coverage to half of the 3,050 homes located on
13 of the 17 reservations that comprise the Southern Cal-
ifornia Tribal Chairmen’s Association. While 576 homes
have adopted Internet services at some point over the past
thirteen years, only 354 homes currently utilize Internet pro-
vided by the TDV network. The lack of broadband adoption
and attrition occurs for various reasons, including residents’
inability to pay for services or lack of satisfaction with the
quality of services. Currently, the TDV network offers two
service packages: $34.95 per month for 2 Mbps and $64.95
per month for 3 Mbps. In addition to providing broadband
access to homes, the TDV network provides access to Tribal
municipalities, schools, libraries, and learning centers free of
charge. Figure 2a gives an overview of the geographic loca-
tion of the TDV network and the reservations it connects.
Figure 2b shows the network architecture, where the TDV
headquarters is denoted as ‘Gateway’ and tower masts as-
sociated with broadband access points are named after the
reservations they serve. We note that the spatial position-
ing of relay tower masts in Figure 2b does not correspond
with their actual geolocations, and instead serves to give
the reader a sense of the network topology. The incoming
access link provides 500 Mbps over fiber and terminates at
the TDV headquarters, located on the Pala reservation. A
wireless backbone comprised of five solar-powered, point-to-
point microwave (11 GHz and 18 GHz) links connects 13
reservations to the gateway. Reservations connect to the
backbone by way of point-to-point links over unlicensed 2.4
GHz and 5 GHz. Access links extending from relay towers
into individual homes and municipality buildings are point-
to-multipoint links operating over WiFi. Of the 500 Mbps
of bandwidth at the gateway, 200 Mbps remain in Pala to
support operations at headquarters and the Pala relay link
while the remaining 300 Mbps are used to provide services

2Tribal Mobility Fund Phase I Eligible Areas Map. Credit: FCC.
http://www.fcc.gov/maps/tribal-mobility-fund-phase-1-eligible-
areas
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Figure 2: Maps of (a) San Diego County with reservations
covered by TDV network marked by circles and (b) TDV
network topology.

to access points that connect to the Internet over the back-
bone. Overall, the TDV network consists of over 815 km of
wireless links— the shortest link (L1) in the backbone spans
1.6 kilometers and the longest link (L4) spans 38.8 kilome-
ters.

3.2 Data collection

Our point of collection is located at the Internet gateway
of the TDV network. We collect data by attaching a traffic
monitoring server to the switch that bridges the gateway and
the TDV network. A mirror port is configured to capture
all packets traversing the network. We capture packet head-
ers with tcpdump and use Bro to collect flow-level statistics
for network applications [5]. Overall, we collected 5.5 TB of
traffic representing 52.8 billion IP packet headers. Data col-
lection methodology and subsequent analysis received IRB
and SCTCA approval prior to collection. All MAC addresses
and IP addresses are anonymized using TraceAnon [9].

4. GENERAL TRAFFIC ANALYSIS

We begin our analysis by looking at general usage and
performance patterns. Relevant findings include:

e Performance bottlenecks are associated with relay and
access links rather than the main backbone

e Packet loss leads to high rates of failure for media
downloads and uploads

All tables and figures are derived from the entire two-month
measurement period, with the exception of Figure 6.

As discussed in Section 3, major points of connectivity are
located at municipality buildings including schools, libraries,
and learning centers. The majority of these buildings close
for the day between 4 pm and 6 pm, rendering their Inter-
net connectivity inaccessible to the public. In order to gauge
the impact of municipality connectivity on daily traffic load,
we look at the average hourly traffic volume associated with
web uploads and downloads across our entire sample (shown
in Figure 3). We observe that even after the typical closing
times (between hours 16 and 18), the hourly traffic volume
maintains its level. We verify that the majority of traffic is
attributable to residential access points by identifying traf-
fic associated with municipality buildings. Overall, we find
that 99% of the observed traffic volume is associated with
residential access points.



Traffic load (GB)
N w N
o ) S)

=
o

0o 3 6 9 12 15 18 21
Hour
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Table 1: Devices used in TDV network.

Mobile devices 411
i0S 42.9%
Android 35.2%
Windows 11.5%

Desktop devices 131
Mac OS X 23.1%
Linux 11.9%
Windows 45.0%

Table 1 provides an overview of unique devices used to ac-
cess the Internet over the TDV network. These devices were
identified using the user agent field of HTTP traffic head-
ers. The majority of users access web content using mobile
devices (smart phones, tablets, e-readers) as opposed to sta-
tionary devices (desktops, laptops, and gaming consoles).
Additionally, gaming consoles account for 11% of desktop
devices in the TDV network.

In order to characterize traffic, we examine network per-
formance both as a whole and associated with each reser-
vation. Figure 4 compares the traffic load averaged over
the entire measurement period with the service level agree-
ment (SLA). We see that the traffic load rarely exceeds the
500 Mbps SLA. This differentiates the TDV network from
previously studied networks in developing contexts, as its
bandwidth capacity is not a limiting factor on traffic usage
and performance. In Table 2, we report performance statis-
tics associated with each reservation relay link. The ‘Link’
column in the table is associated with the backbone link that
connects to each relay tower and reservations are noted using
their associated abbreviations from Figure 2b. Retransmis-
sion rate is calculated according to the number of retrans-
mitted segments in a flow divided by the total number of
segments transmitted. We observe high retransmission and
failure rates at all relay links. Pala, which connects to the
gateway via a single relay link, has the highest failure and re-
transmission rates. Exemplified by Pauma, Rincon, and San
Pasqual, performance can vary in terms of packet loss and
flow failure even for reservations connecting to the backbone
via the same link. Likewise, reservations that are multiple
hops away from the gateway, such as Mesa Grande and Man-
zanita, do not experience performance degradation in pro-
portion to the number of backbone hops they must travel.
Based on these observations, we conclude that performance
degradation occurs either over the relay links between back-
bone towers and individual reservations or over the access
links that extend connectivity from relay links into homes
and municipality buildings. Our current measurement con-
figuration does not allow us to pinpoint the exact location
of packet loss, but based on our findings and our knowledge
of the network topology, we suspect that packet loss is ei-
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Figure 4: Achieved throughput compared to SLA.

Table 2: TCP statistics for each reservation.

Link| 7 Failed o oo ansmitted | RTT (ms) | IAT (s)
requests
P — 25.6 5.9 140 0.37
PM L1 24.0 5.7 89 0.26
R L1 28.8 4.6 93 0.26
SP L1 33.9 4.9 94 0.30
MG L2 25.7 4.8 71 0.15
M L5 23.1 5.1 79 0.27

ther due to low signal strength between the backbone towers
and relay points or due to interference between access links
connecting to the same relay point.

4.1 Overview of web applications

Figure 5 reveals that Instagram is the most requested web
application, with over 12.1 million requests over the mea-
surement period. This is surprising given current measure-
ments of web usage in the U.S., which have revealed Face-
book as the most dominant social media presence, followed
by Twitter, LinkedIn, and Pinterest [8]. We are also sur-
prised by the high levels of gaming traffic represented by
PlayStation and Xbox. While Xbox is not ranked as one of
the top 10 most requested applications in the network, it is
ranked in the top 15. Similar to what we observed with the
rank of Instagram traffic, the popularity of PlayStation is
unexpected; it ranks as the sixth most popular web site in
the TDV network compared to 1,089th in the U.S. [8]. In
terms of popularity, Youtube is second only to Instagram
with 1.8 million requests during the measurement period.
This is similar to the rest of the U.S. where Youtube is
ranked as the third most popular web site [8]. Surprisingly,
e-commerce sites like Amazon and Ebay are not even ranked
in the top 30 most accessed websites in the TDV network,
despite ranking as the 4th and 8th most accessed websites in
the U.S. When searching for an explanation for this dearth,
we find that sovereignty plays a role. Many e-commerce sites
rely on U.S. Postal Services for shipping; however, as reser-
vation roads are not maintained by the county, U.S. Postal
Services will not deliver to homes that must be accessed
through these roads. Similarly, other major shipping com-
panies (i.e. UPS and FedEx) reserve the right not to deliver
to all areas and do not guarantee delivery to all addresses.
In short, online ordering and shipping can be a significant
challenge on reservations and the lack of e-commerce traffic
in the TDV network reflects this.

Figure 5b shows the top 10 most bandwidth-consuming
web sites observed in the TDV network. We find that stream-
ing media sites represent the greatest bandwidth consumers
in the network, accounting for 44% of the overall web traffic
volume. This is consistent with streaming media usage in
the rest of the U.S., where streaming media accounts for 34-
50% of peak traffic bandwidth [6]. Likewise, the composition
of streaming media mirrors that of the U.S., where Netflix
accounts for 60% of streaming media. We also notice that
video gaming sites such as playstation.com and xbox.com



google-analytics.com
liverail.com
facebook.com
adnxs.com
playstation.net
doubleclick.net
apple.com
youtube.com
instagram.com

0 5 10 15
Millions

HTTP/HTTPS requests
(a)

windowsupate.com

facebook.com

directv.com
xbox.com
instagram.com
google.com
playstation.net
apple.com
youtube.com
netflix.com

0 10000 2000 3000 4000
Gigabytes

(b)

Figure 5: Overview of the most popular URLs by (a) number of HTTP requests and (b) traffic volume.
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Figure 6: Hourly traffic demand for (a) Instagram, (b) Youtube, and (¢) Netflix from July 8 to July 21.

rank among the top 10 web sites in terms of bandwidth
and overall, gaming traffic accounts for 8.9% of web traffic
volume. Social media comprises a much smaller portion of
traffic volume, counting for only 4.5% of the total bandwidth
consumed by web traffic. Finally, media and software down-
loads from online stores such as the Google PlayStore and
the iTunes Store account for 23% of web traffic volume. This
is in contrast to global mobile traffic patterns, which mea-
sure app store downloads as accounting for less than 18%
of mobile traffic [6]. In total, media represents over 70%
of observed web traffic by volume. Given the popularity of
media-oriented applications in terms of HT'TP requests and
proportion of traffic volume, as well as Tribal interests in
leveraging broadband for the development of cultural me-
dia, we focus the remainder of this paper on understanding
media performance and usage in the TDV network.

4.2 Media performance

Previous studies of emergent wireless networks have ob-
served connections between usage patterns and network per-
formance [22][28][15]. Based on the high levels of media
traffic in the network in addition to the popularity of media-
based sites, we look specifically at the performance of media

applications in the TDV network to identify the presence of
performance bottlenecks that might impact user behavior.
In order to do this, we look to the performance of three ap-
plications: Youtube, Netflix, and Instagram. These three
applications are representative of the predominant media
transaction types (streaming and bulk transfer). We select
each application based on its high traffic volume in the net-
work and the different ways that it allow users to inter-
act with media. We begin by studying the daily usage of
each application. In Figure 6 we show the daily traffic vol-
ume and web requests generated by Instagram, Netflix, and
Youtube over a two-week period which we verify as repre-
sentative of the entire sampling period (note the different
y-axis scales). Traffic volume per hour was calculated by
summing the total number of bytes per hour; the number of
HTTP requests per hour was calculated by summing the to-
tal number of HTTP requests per hour. While weekend and
weekday traffic are not significantly different for any of the
applications, all three applications exhibit anthropocentric
patterns in their usage over time.

We now look at media performance for Instagram, Youtube,
and Netflix. Table 3 reports performance statistics for each
application including the retransmission rate, download fail-



Table 3: TCP statistics for Instagram photos (I-P),
Instagram videos (I-V), Youtube (Y), and Netflix (N).

% Failed % Failed | RIT | IAT

% Retransmitted downloads | uploads (ms) | (s)
I-P 3.2 11.6 24.9 91 0.22
I-v 3.8 31.0 25.0 91 0.29
Y 2.9 32.3 30.1 73 0.18
N 3.4 75.0 NA 94 0.34

ure rate, upload failure rate (when applicable), round trip
time (RTT), and packet inter-arrival time (IAT). Round trip
times and packet inter-arrival times associated with each ap-
plication were calculated by taking the average round trip
time and packet inter-arrival time for each TCP flow and
averaging them over all TCP flows. The retransmission rate
for each application represents the percentage of segments
retransmitted per TCP flow averaged across all TCP flows.

4.2.1 Video downloads

Understanding the user experience with regards to the
network performance of these platforms can highlight ar-
eas of improvement in terms of network infrastructure and
application design. Overall, we find relatively high rates of
download failure for Youtube, Netflix, and Instagram videos.
We find that Netflix has the highest failure rate of all, with
75.0% of video downloads ending in a failure. In compari-
son, 32.3% of Youtube downloads fail, and Instagram video
downloads experience a failure rate of 31%. In exploring
failures associated with video downloads, we find that the
predominant cause of failure for all applications is a TCP
RST sent by the client. This type of failure causes 63% of
download failures for Youtube, 60% of download failures for
Netflix, and 58% of download failures for Instagram videos.
This type of failure is indicative of a poor user experience,
often due to packet loss [22].

To assess the impact of retransmission rate on download
performance, we compare the distributions of successful video
downloads to failed video downloads for Netflix (N), Youtube
(Y), and Instagram (I) in Figure 7. As an example of our no-
tation in Figures 7 and 8, we use “N-S” to signify successful
Netflix flows and “N-F” for failed Netflix flows. We find that
for all three applications, retransmission rates are higher for
failed downloads than for successful downloads, and on av-
erage, failed flows experience 8.2-9.7% loss. For streaming
video applications, such as Youtube and Netflix, this type of
loss rate would negatively impact the user quality of experi-
ence and termination of download mid-stream (triggering a
client-sent RST) is consistent with our findings of cause of
failure. To assess how failure impacts user interaction with
streaming video applications, we study the distributions of
flow size and flow duration for successful and unsuccessful
Netflix and Youtube downloads using Tstat [1]. Figure 7a
graphs the distribution of flow sizes for failed and successful
flows for both Youtube and Netflix and Figure 7b shows the
distribution of flow duration for failed and successful flows
for the two applications. For the size of a flow, we report the
goodput rather than the total size including retransmitted
data. We find that for both applications, failed flows are on
average 83% larger and last 28% longer than their successful
counterparts. While we have established that failed down-
loads are associated with higher retransmission rates, we
note that these failures correspond to longer, lengthier down-
loads, which are more likely to experience losses resulting in

1

0.8
w 0.6 f —N-S 1
Q i ==N-F
O #
0.4 —V-S|i
-=Y-F
0.2 —-S
==I-F
0 |
0 0.5 1

Retransmission rate

Figure 7: Distribution of retransmission rates for downloads.
1 § . 1 .

08 0.8
L 06 L06
S 8
© o4 0.4
0.2 0.2
0555 5
10 10 10

Minutes

(b)
Figure 8: Distributions of (a) flow size and (b) duration for
Netflix and Youtube downloads.

1 .
—Success
0.8}|==Fail

0.6

CDF

0.4

0.2

-

10 Minutes 20 30

Figure 9: Distribution of flow duration for Instagram video
downloads.

a poor user experience. However, we are surprised to find
that although Instagram videos are smaller than Youtube
and Netfix downloads and experience shorter flow duration,
this application experiences the highest retransmission rate
for both failed and successful downloads. One reason for
the high retransmission rate for successful Instagram video
downloads is that it downloads media in bulk, rather than
as a stream—so quality of experience is not impacted by the
number of packet losses. However, packet loss impacts the
length of time it takes to download a video before a user
can watch it. In Figure 9, we compare the distributions
of flow duration for successful and failed Instagram video
downloads. We find that download times are 62% longer
for failed downloads than for successful downloads. This is
expected as packet loss leads to more retransmissions that
result in longer download times. Overall, 40% of downloads
require over 15 minutes.

4.2.2  Video uploads

We now investigate upload performance for Youtube and
Instagram videos. Upload performance in these applica-
tions is particularly important in the context of the TDV
network given many of the goals Tribal communities have
for broadband connectivity, including cultural content cre-
ation, dissemination, and engagement. Overall, 504 video
files were uploaded to Instagram compared to 444 uploaded
to Youtube. 25% of Instagram video uploads failed and 30%
of Youtube uploads failed. When examining the predomi-



nant cause of failure for uploads, we find that for Instagram,
85% of failures were due to an unresponsive client (no data
packets or control packets were observed coming from the
client) and 11% of failures were caused by an RST sent by
the server. For Youtube, 55% of upload failures are caused
by a timeout-triggered RST sent by the server and 36% of
failures are caused by an unresponsive client.

While packet loss over relay and access links can be a
contributing factor to failure, we also consider that all Insta-
gram uploads and 98% of Youtube uploads are initiated from
mobile devices. Uploading from a mobile device increases
the likelihood of a user inadvertently moving from a space
of high connection quality to low connection quality, partic-
ularly if upload times are extensive. On average, success-
ful Instagram video uploads take 1.4 minutes and success-
ful Youtube video uploads take 4.9 minutes. Failed Insta-
gram uploads take 2.1 minutes before termination and failed
Youtube uploads take 5.7 minutes before termination. We
believe that this short upload duration, facilitated by lower
retransmission rates for upstream traffic, is what allows for
Instagram video uploads to be more successful than video
downloads. The average uploaded Instagram video is only
0.24 MB compared to the average uploaded Youtube video,
which is 11.2 MB. This difference is unsurprising given the
restrictions Instagram places on video length (15 seconds),
dimension (640 x 640 pixels), and resolution. This is in con-
trast to Youtube, which limits video uploads at 11 hours or
128 GB. Increased video sizes have negative consequences for
upload failure, as they typically take longer to upload and
are more likely to experience packet loss. We also find that
on average, failed Instagram uploads are retried 1.3 times
and failed Youtube uploads are retried 1.7 times. 3% of re-
tried Instagram video uploads and 7% of retried Youtube
uploads are never successfully completed. For each of these
failed retries, we find that each final attempted retry takes
10 minutes on average before the attempt is terminated. We
also find that repeatedly failed Instagram video uploads re-
quire 3 more minutes than video uploads that eventually
succeed; repeatedly failed Youtube uploads require 3.6 more
minutes than video uploads that eventually succeed.

4.2.3 Images

With the largest number of uploaded files and a platform
that lends itself to media sharing and collaboration, Insta-
gram embodies much of the community enrichment potential
of broadband connectivity. Unlike Youtube, it enables users
to upload images as well as videos. Because the Instagram
app was designed exclusively for mobile devices, it imposes
limitations on its media formats and as a result provides a
higher likelihood of successful media transfers. This primar-
ily manifests as limited upload file dimensions (640 x 640 pix-
els). Once an image has been uploaded to Instagram, three
standardized versions are created: small image (>10 KB),
medium image (>20 KB), and large image (>100 KB). For
uploaded videos, small, medium, and large images are gener-
ated from the first frame of the video. When the Instagram
app is active, images are downloaded from content servers
where large versions of the image correspond with images
that are more relevant to users, medium images correspond
with images that are less relevant, and small images are used
for metadata reports. In Table 4, we show the failure rates
associated with small, medium, and large downloaded, as
well as uploaded Instagram images. 76% of download fail-

Table 4: Failure rates for Instagram images.

Total # | Failure rate (%)
Small images 5,450,807 13.9
Medium images 2,880,253 15.0
Large images 2,345,020 17.6
Uploaded images 10,677 23.6

Table 5: Overview of TDV Instagram data.

Total Local
Media objects 150,368 4,807
Content creators 1,180 164
Media interactions 277,309 | 19,099
Social interactions 144,721 11,159
Instagram users NA 238

ures and 86% of upload failures are caused by unresponsive
clients after a TCP connection has been established.

S. SOCIAL MEDIA AND LOCALITY

Discussions from Section 3 highlight the importance of
digital media to Tribal interests in preserving and sharing
cultural knowledge. Moreover, studies of emergent networks
in under-served communities note the importance of local
content sharing for establishing a digital culture that em-
phasizes locally relevant information. In the previous sec-
tion, we evaluated the performance of media transactions
in three of the most popular web applications in the net-
work. As we would expect, packet loss has a negative impact
on both streaming and bulk media downloads alike. Me-
dia uploads fail due to timeouts and unresponsive clients.
We are surprised that Instagram is so vulnerable to loss,
given its design for mobile environments. In this section,
we analyze media practices in the TDV network to deter-
mine whether we can distinguish localized usage patterns.
Due to its surprising popularity in the TDV network and its
publicly accessible API, we use Instagram network traces to
answer questions about media locality in a Tribal context.
Our analysis reveals that the locality of interest in the TDV
network is very high compared to non-indigenous communi-
ties, with the top 10% of users’ strongest social connections
spanning less than 10 km [20]. This is expected given the
social values observed in indigenous communities that focus
heavily on developing intra-community relationships [26]. In
Section 6, we discuss the implications of these findings for
improving connectivity.

Table 5 provides an overview of the Instagram data we
observe, including information about media interactions and
users involved in the TDV Instagram network. In Table 5,
“content creators” refer to Instagram users who have up-
loaded media to Instagram. We note that media interactions
differ from social interactions: a media interaction includes
user-explicit actions such as liking, commenting on, or view-
ing a media object, while a social interaction only includes
user-explicit actions that are announced on the acting user’s
social feed, such as liking and commenting on a media ob-
ject.

We find that media views comprise nearly half of all media
interactions. This means that only about half of the media
interactions that occur in the network are publicly broadcast
through the Instagram social network. We also find that
only 7% of media interactions occur between a user from the
TDV network and media created by a user from the TDV
network; only 8% of social interactions are between a TDV
user and media created by a TDV user. This is consistent
with the fact that only 3% of the media objects we observed
were created by local users.



Table 6: Definitions of Instagram interaction types.

Media interactions User-explicit actions (i.e. liking, com-

menting on, and viewing a media object).

Social interactions User-explicit actions that are broadcast
to a user’s followers (i.e. liking and com-

menting on a media object).
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Figure 10: Distributions of media interactions associated
with local and non-local content creators.

At first glance, this low proportion of local interaction
seems to indicate a low level of local interest. However,
when we look to interactivity based on content creator lo-
cale, we find a much higher proportion of social interactions
associated with content creators from within the TDV net-
work. We are able to identify the media associated with a
content creator based on the media’s identifier, which con-
tains a unique ten digit identifier concatenated to the user
identifier of its creator. In Figure 10, we show the “popular-
ity” of each content creator we observe in the TDV network.
Here, we define “popularity” as the total number of media
interactions (see Table 6) associated with media created by
each observed content creator. On average, the TDV com-
munity interacts with locally created media 57 times while
it interacts with non-locally created media only five times.
So while there are far more non-local media objects to inter-
act with, TDV users are much more engaged with content
created by local content creators than with content created
by non-local content creators.

Based on previous work exploring the connection between
social media and cultural resilience in indigenous communi-
ties, we study the underlying social structure of the TDV
Instagram network [25].We begin by defining a social con-
nection between a given pair of Instagram users u; and u;
as:

Cui = ;L:o Pui(uj) (1)

where P,,(uj) = 1 if there exists any social interaction be-
tween user u; and media created by user u; and Py, (u;) =0
if no such social interaction exists between user u; and me-
dia created by user u;. In Figure 11a, we show the number
of social connections (C') between each user and all other
users in the same reservation (n ={11,17,25,69,114}> %),
in the TDV network (n = 238), and outside the TDV net-
work (n = 33,183). As users interact with other users from
broader circles of the Instagram network, the number of so-
cial connections associated with individual users increases.
In addition to the number of social connections, we mea-
sure the strength (S) associated with a connection, or the
number of social interactions that exist between user u; and

3The value of n is dependent on which reservation u; is associated.

4We exclude users from Manzanita in these calculations as n = 2 for
this reservation and skews the distribution.
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Figure 11: (a) Number of social connections and (b) strength
of social connections per user.
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Figure 12: Circulation times of local and non-local media.

media created by user u;:

Sui,uj - Iui,uj + Iuj,ui (2)

where I, ; is the number of social interactions between u;
and media created by u;. Figure 11b illustrates the distribu-
tion of S for each user in association with other users from
the same reservation, from the TDV network, and from out-
side the TDV network. While we observe a greater number
of social connections between local and non-local users in
Figure 11a, Figure 11b reveals that the strength of these
connections is weak. In contrast, Figure 11b shows that the
more proximate users are in the network, the stronger the
social connections are between them. Thus, we find that the
TDV Instagram network is composed of a dense core of a
few strong local connections and expands out via numerous
weak connections. Based on this finding, we expect to see a
high locality of interest with respect to media.

5.1 Maedia prevalence

In addition to the popularity of media, we examine inter-
actions over time to identify how long media circulates in
the TDV Instagram network. We measure this by identify-
ing the time delta between a media object’s initial appear-
ance in the TDV network and its final appearance in the
network across all media interactions (defined at the begin-
ning of Section 5). We have already established that the
number of non-local media far exceeds the number of lo-
cal media present in the network (see Table 5); however in
Figure 12, we see that locally created content circulates for
much longer within the TDV network than non-local media.
Looking more closely, we find that 99.6% of the 145,561 non-
local media occur only once in the TDV network. Half of
the 4,807 local media objects circulate for over 4.2 hours and



are liked or commented on an average of 5 times, while 382
local media objects circulate for over a week and are liked
or commented on an average of 7 times. Intuitively, longer
circulation times should correspond to an increased level of
social engagement; however, circulation time is based on
media interactions, not just social interactions. This means
that media views, which account for 50% of all media inter-
actions, contribute significantly to a media object’s circula-
tion time. Therefore, not only is local media more socially
popular than non-local media (see Figures 10 and 11), but
it is relevant over a longer period of time.

6. DISCUSSION
6.1 Bonds and bridges

Work in the social sciences has identified the importance of
online social networks (OSNs) to Tribal identity and cultural
preservation [25]. In particular the formation of “bonds” and
“bridges” within Tribal OSNs has significant impact on the
strength and resilience of indigenous culture [26]. Bonding
relations within a community help members make sense of
negative experiences and look forward to a more positive
future, creating cultural continuity that connects the tradi-
tional culture of the past to the development of a new culture
of the present. Bridging connections between different com-
munities allows for communal empowerment and influence
on the wider society. In Section 5, we investigated various
dimensions of local versus non-local media prevalence and
propagation in the TDV Instagram network. With respect
to media interactions on Instagram, our findings show that
there are many weak bridging connections and a dense core
of strong bonding connections. This leads us to believe that
social media in Tribal functions to strengthen and maintain
bonding connections; however, it is unclear whether bridg-
ing connections exert any quantifiable influence over outside
communities.

The high locality of interest with respect to locally created
media presents opportunities to improve bonding connec-
tions in several ways. Current connectivity can be improved
by storing locally created content locally, which would pre-
vent users from uploading media over lossy relay and access
links that extend upload completion times, improving up-
load success rates. This strategy would also improve down-
load performance (particularly for videos), as user quality of
experience could be improved by avoiding lossy links. More-
over, if locality of media interest corresponds to spatial close-
ness, social bonds could be used as a means of extending con-
nectivity via opportunistic encounters with peers. This way,
users who have access to spaces of ubiquitous connectivity
might serve as media vectors, transferring relevant media
over Bluetooth, WiFi Direct, or NFC to other users as they
come into contact geographically.

6.2 Nations within a nation

While previously studied networks in developing contexts
typically reside within greater regions of development, Tribal
communities in the U.S. are positioned within a developed
nation. In many ways, the effects of the digital divide are
amplified in this context and citizens without broadband
access are marginalized at an accelerated rate. With high
broadband penetration rates in the non-Tribal U.S., many
services now assume ubiquitous broadband accessibility, and
with this assumption come expectations that cannot be met

on Tribal lands with the current state of broadband acces-
sibility. As funding and infrastructure licensing processes
move online, Tribes are increasingly alienated from the means
by which necessary infrastructures are established. In Sec-
tion 4, we show that even with sufficient bandwidth ca-
pacity, the wireless links used to extend connectivity over
long distances are prone to average packet loss rates of 5%,
which degrade media performance in both the up-link and
down-link directions. Packet loss is caused by limitations
in 802.11, which make it sub-optimal for transmitting over
long-distance wireless links. Even though the WiFi spec-
trum is inappropriate for the distance requirements of the
TDV network, the spectrum is unlicensed and helps reduce
the cost of using the network. If Tribes were able to project
their sovereignty over radio frequency in Tribal land, soft-
ware defined networks leveraging unlicensed or opportunis-
tically available spectrum could significantly increase the
penetration and affordability of broadband services. These
spectrum rights have been recommended by the FCC and
are currently under discussion as becoming part of spectrum
access policy in the U.S. [2].

6.3 Attitudes towards technology

Broadband is generally recognized as a means to increase
the number of available communication pathways. However,
there are various concerns surrounding the Internet and In-
ternet technologies. Some of these concerns exist in both
Tribal and non-Tribal contexts, including online engagement
detracting from face-to-face interactions, the abundance of
“negative” and “pornographic” content online, and the dis-
sonance between offline and online identities [25]. Other
concerns are more specific to the Tribal context; these in-
clude issues of acculturation and protecting American In-
dian intellectual property on the Internet. Age demograph-
ics also play an important role in Tribal broadband usage.
Reservations have younger populations than the surround-
ing U.S.; the median age on reservations is 26 years, whereas
the median age in the U.S. is 37.2 years [7]. Reasons for
the skew in ages on reservations include: higher mortality
rates due to health conditions, accidents, and suicide; and
lack of employment and educational services on reservations
which cause working-age populations to seek school and job
opportunities outside reservations [3] [11]. In Figure 5, we
observe the impact of the age skew in the types of appli-
cations that are popular, such as the prevalence of online
gaming sites (Playstation and Xbox) and niche social me-
dia platforms (Instagram). Dissolving the digital divide in a
way that benefits Tribal communities involves understand-
ing inter-generational Tribal attitudes and concerns regard-
ing broadband technologies and allowing Tribes to be ac-
tively involved in navigating how those concerns should im-
pact network deployment and technological design in their
communities. In this context, we note that localized content
storage not only presents a solution that reduces the impact
of packet loss, but also presents an opportunity for Tribes
to impose tighter control on their intellectual content.

7. CONCLUSION

Internet usage in the TDV network is distinct from the
U.S. context in which it resides, especially with respect to
the prevalence of niche social media traffic, as well as the
influence utility infrastructures have on traffic patterns, ex-
emplified in the lack of online shopping traffic due to unreli-



able delivery infrastructure. Our work empirically supports
trends identified in survey studies regarding Tribal broad-
band usage: we show that social media is the most popu-
lar application in the network in addition to other media-
oriented applications like Netflix, Youtube, and iTunes. While
packet loss negatively impacts media performance, we use
Instagram traffic to identify strong social connections be-
tween users within the same reservations and we find that
locally created media receives significantly more interactions
than non-local media. By exploiting these patterns, archi-
tectures that combine local storage, user mobility, and offline
social encounters can improve and extend current connectiv-
ity.

Tribes in the U.S. are not the only indigenous groups fac-
ing issues of disenfranchisement. While issues of sovereignty,
funding, lack of political power, and geographic isolation ex-
ist for indigenous people around the world, where it is avail-
able, broadband connectivity has been shown to strengthen
indigenous identity and further collective goals as cultural
practices and struggles are communicated between indige-
nous groups at a transnational scale [24]. By understand-
ing indigenous usage of broadband as well as the technical
barriers to broadband deployment, indigenous communities
can focus on developing and extending connectivity in ways
that make sense for their unique political, geographical, and
community contexts.
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